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Calculus I
Objective and Learning Outcomes

Objective

I Introduction to essential scalar calculus

Learning Outcomes

I You will understand
I continuity
I differentiability
I chain rule of differential calculus
I partial, total, directional derivative
I O(·) notation
I Taylor series.
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Calculus I
Continuity (f : IR → IR)

Let [(a, b) ⊆] IR be the (open) domain of the univariate scalar function
f : IR → IR with image [(c , d) ⊆] IR

f (x) is right-continuous at x̃ ∈ IR if

lim
∆x→0,∆x>0

f (x̃ + ∆x) = f (x̃) .

f is left-continuous at x̃ if

lim
∆x→0,∆x>0

f (x̃ −∆x) = f (x̃) .

f is continuous at x̃ if it is both left- and right-continuous at x̃ .

Continuity is a necessary condition for differentiability.

,
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Continuity
Example

Consider the absolute value function f (x) = |x | at x̃ = 0:

The left limit
lim

∆x→0,∆x>0
f (0−∆x) = f (0) = 0

and the right limit

lim
∆x→0,∆x>0

f (0 + ∆x) = f (0) = 0

are identical proving that |x | is continuous at the origin.

In fact, |x | is continuous throughout its domain IR.

,
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Continuity
Alternative Formulation (f : IR → IR)

Let IR be the domain of the univariate scalar function f : IR → IR.

The function f is continuous at a point x̃ ∈ IR if

lim
x→x̃

f (x) = f (x̃) .

The above implies that for all series (xi )
∞
i=1 with

lim
i→∞

xi = x̃

and xi 6= x̃ the series (f (xi ))∞i=1 converges to f (x̃).

Continuity in IR requires continuity at all x̃ ∈ IR.

,
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Calculus I
Intermediate Value Theorem

Let y = f (x) be continuous within a neighborhood x + ∆x of x taking values
f (x) and f (x + ∆x) at the endpoints of the interval. Then f takes all values
between f (x) and f (x + ∆x) over the same interval.
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If f (x) and f (x + ∆x) have different signs,
then f has a root within the interval bounded
by x and x + ∆x , i.e, ∃x̃ : f (x̃) = 0.

The simplest possible root finding algorithm
follows from iterative / recursive bisection of
the the interval [x , x + ∆x ].

Unfortunately, the bisection algorithm converges slowly and does not generalize
to higher dimensions. Hence, we are going to investigate superior alternatives.

Note: x̃ not necessarily unique; f can take values outside of [f (x), f (x + ∆x)]

,
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Bisection
Implementation

1 template<typename T>
2 T f(const T &x) { ... }
3

4 template<typename T>
5 void solve(T &x, const T &dx) {
6 T xu=x+dx;
7 while (fabs(x−xu)>1e−7) {
8 T xm=(xu+x)/2, ym=f(xm);
9 if (ym>0) xu=xm; else if (ym<0) x=xm; else x=xu=xm;

10 }
11 }

,

Calculus I, info@stce.rwth-aachen.de 11



Outline

Objective and Learning Outcomes

Continuity

Intermediate Value Theorem and Bisection

Differentiability

Chain Rule

Taylor Series

Further Essential Terminology

Summary and Next Steps

,

Calculus I, info@stce.rwth-aachen.de 12



Calculus I
Differentiability (f : IR → IR)

Let IR be the domain of the univariate scalar function f : IR → IR.

f (x) is right-differentiable at x̃ ∈ IR if the limit

λ+ = lim
∆x→0

f (x̃ + ∆x)− f (x̃)

∆x

exists (is finite). f is left-differentiable at x̃ if

λ− = lim
∆x→0

f (x̃)− f (x̃ −∆x)

∆x

exists (is finite). f is differentiable at x̃ if it is both left- and right-differentiable
and

λ+ = λ− ≡ df

dx
(x̃) .

,
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Differentiability
Example

Consider the absolute value function f (x) = |x | at x̃ = 0.

The left limit is derived from the backward difference

lim
∆x→0,∆x>0

f (0)− f (0−∆x)

∆x
= lim

∆x→0,∆x>0

0−∆x

∆x
= −1

while a forward difference is used to get the right limit

lim
∆x→0,∆x>0

f (0 + ∆x)− f (0)

∆x
= lim

∆x→0,∆x>0

∆x

∆x
= 1 .

The limits are distinct proving that |x | is not differentiable at the origin.
However, |x | is differentiable everywhere else within its domain IR.

,
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Differentiability
Alternative Formulation (f : IR → IR)

Let IR be the domain of the univariate scalar function f : IR → IR. The function
f is differentiable at point x̃ ∈ IR if there is a scalar f ′ ∈ IR such that

f (x̃ + ∆x) = f (x̃) + f ′ ·∆x + r

with asymptotically vanishing remainder r = r(x̃ ,∆x) ∈ IR , that is,

lim
∆x→0

r

|∆x |
= 0 .

Differentiability in IR requires differentiability at all x̃ ∈ IR (and similarly for
non-scalar cases). The function

f ′ = f ′(x) =
df

dx
(x) : IR → IR

is called the [first] derivative of f .

,
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Calculus I
Chain Rule: f : IR → IR

Let y = f (x) : IR → IR (or open subdomains in IR) be such that

y = f (x) = f2(f1(x)) = f2(z)

with (continuously) differentiable f1, f2 : IR → IR.

Then f is (continuously) differentiable and

df

dx
(x̃) =

df2
dx

(z̃) =
df2
dz

(z̃) · df1
dx

(x̃)

for all x̃ ∈ IR and z̃ = f1(x̃).

,
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Calculus I
O(·) Notation

Given two functions f (x) and g(x) the notation

f = O(g)

implies that f grows up to a constant factor as g , that is,

∃C > 0 ∈ IR : |f (x)| ≤ C · |g(x)|

for all x within the shared domains of f and g .

E.g, f (x) = O(x2) implies that f (x) does not grow faster than C · x2 for some
constant C > 0.

Although,

f (x) = O(x) ⇒ f (x) = O(x2) ⇒ f (x) = O(x3) . . .

we state the lowest upper bound.

Ω(·) notation covers the corresponding highest lower bound.

,
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Calculus I
Taylor Series (f : IR → IR)

Let f : IR → IR be n-times continuously differentiable.

Given the value of f (x) at some point x̃ ∈ IR the function value f (x̃ + ∆x) at a
neighboring point can be approximated by a Taylor series as

f (x̃ + ∆x) ≈O(∆xn) f (x̃) +
n−1∑
k=1

1

k!
· d

k f

dxk
(x̃) ·∆xk .

Throughout this course we assume convergence of the Taylor series for k →∞
to the true value of f (x̃ + ∆x) within all subdomains of interest, which is not
the case for arbitrary functions.

For n = 4 we get

f (x̃ + ∆x) = f (x̃) + f ′(x̃) ·∆x +
1

2
· f ′′(x̃) ·∆x2 +

1

6
· f ′′′(x̃) ·∆x3 +O(|∆x |4) .

,
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Taylor Series
Example

Consider y = f (x) = x3 at x + ∆x for x = 1 and ∆x = 0.1.

f (x + ∆x) = 1.13 = 13 + 3 · 12 · 0.1 + 6 · 1 · 0.12 + 6 · 0.13 = 1.331

≈O(∆x3) 13 + 3 · 12 · 0.1 + 6 · 1 · 0.12 = 1.33

≈O(∆x2) 13 + 3 · 12 · 0.1 = 1.3

≈O(∆x1) 13 = 1

Consider y = f (x) = sin(x) at x + ∆x for x = 1 and ∆x = 0.1.

f (x + ∆x) = sin(1.1) = 0.891207 . . .

≈O(∆x4) sin(1) + cos(1) · 0.1− sin(1) · 0.12 − cos(1) · 0.13 = 0.891204 . . .

≈O(∆x3) sin(1) + cos(1) · 0.1− sin(1) · 0.12 = 0.891294 . . .

≈O(∆x2) sin(1) + cos(1) · 0.1 = 0.895501 . . .

≈O(∆x1) sin(1) = 0.841471 . . .

,
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Further Essential Terminology
Linearity (f : IR → IR)

A function f : IR → IR is called linear if

I f (a + b) = f (a) + f (b)

I f (α · a) = α · f (a)

for all a, b, α ∈ IR.

Example: f (x) = p · x with constant p ∈ IR is linear.

f (a + b) = p · (a + b) = p · a + p · b = f (a) + f (b)

f (α · a) = p · α · a = α · p · a = α · f (a)

Functions of the form f (x) = p · x + q with constant p, q ∈ IR are called affine.
Linear functions are affine with q = 0.

Roots of affine functions are defined by linear equations f (x) = p · x + q = 0.

,
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Further Essential Terminology
Beyond Linearity

Let f : IR → IR be analytic (infinitely often differentiable), e.g, x2, ex , sin(x), . . .

f is constant [over (a, b)] if its derivatives vanish identically for all
x ∈ [(a, b) ⊆]IR, e.g, f (x) = 42 is constant over IR.

f is (at most) affine if its second and higher derivatives vanish identically for all
x ∈ IR, e.g, f (x) = 42 · x − 24 is affine over IR while f (x) = 42 · x is linear.

f is (at most) quadratic if its third and higher derivatives vanish identically for
all x ∈ IR, e.g, f (x) = 42 · x2 − 24 · x + 1 is quadratic over IR .

f is (at most) cubic if its fourth and higher derivatives vanish identically for all
x ∈ IR, e.g, f (x) = 42 · x3 − 24 is cubic over IR .

etc.

,
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Further Essential Terminology
Monotonicity (f : IR → IR)

A function f : IR → IR is

I [strictly] monotonically increasing over (a, b) ⊆ IR if

∀x0, x1 ∈ (a, b) : x0 < x1 ⇒ f (x0)[<] ≤ f (x1)

or, equivalently, if f is differentiable over (a, b), then

∀x ∈ (a, b) : f ′(x) [>] ≥ 0 .

I [strictly] monotonically decreasing over (a, b) if

∀x0, x1 ∈ (a, b) : x0 < x1 ⇒ f (x0)[>] ≥ f (x1)

or, equivalently, if f is differentiable over (a, b), then

∀x ∈ (a, b) : f ′(x) [<] ≤ 0 .

,
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Further Essential Terminology
Convexity (f : IR → IR)

Let f : IR → IR be continuous over [a, b] ⊂ IR. Then f is [strictly] convex if

∀x0, x1 ∈ [a, b] : f

(
x0 + x1

2

)
[<] ≤ f (x0) + f (x1)

2

(points of all secants above the graph of f )

Let f : IR → IR be twice differentiable over [a, b] ⊂ IR . Then f is [strictly]
convex if f ′′(x) [>] ≥ 0 for all x ∈ [a, b].

Examples: f (x) = x2 and f (x) = ex are strictly convex over IR; f (x) = sin(x)
is strictly convex over (π, 2 · π); f (x) = 42 · x is (not strictly) convex over IR.

,
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Further Essential Terminology
Concavity (f : IR → IR)

Let f : IR → IR be continuous over [a, b] ⊂ IR.

f is [strictly] concave if

∀x0, x1 ∈ [a, b] : f

(
x0 + x1

2

)
[>] ≥ f (x0) + f (x1)

2

(points of all secants below the graph of f )

Let f : IR → IR be twice differentiable over [a, b] ⊂ IR . Then f is [strictly]
concave if f ′′(x) [<] ≤ 0 for all x ∈ [a, b].

Examples: f (x) = −x2 and f (x) = −ex are strictly concave over IR;
f (x) = cos(x) is strictly concave over (−π2 ,

π
2 ); f (x) = 42 · x is (not strictly)

concave over IR .

,
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Calculus I
Summary and Next Steps

Summary

I Introduction of essential calculus

I Roots of nonlinear equations by bisection

Next Steps

I Play with bisection code

I Continue the course to find out more ...

,
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