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Calculus II
Objective and Learning Outcomes

Objective

I Introduction to essential vector calculus

Learning Outcomes

I You will understand
I continuity
I differentiability
I gradient, Jacobian, Hessian
I chain rule of differential calculus
I partial, total, directional derivative
I directional derivative DAG × vector product
I Taylor series.
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Calculus II
Continuity

Let IRn be the domain of the multivariate scalar function f : IRn → IR. The
function f is continuous at a point x̃ ∈ IRn if

lim
x→x̃

f (x) = f (x̃) .

A multivariate vector function

F =

 f1
...
fm

 : IRn → IRm

is continuous if and only if all its component functions fi , i = 1, . . . ,m are
continuous.

,
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Calculus II
Differentiability

Let IRn be the domain of the multivariate scalar function f : IRn → IR. The
function f is differentiable at point x̃ ∈ IRn if there is a vector f ′ ∈ IRn such
that

f (x̃ + ∆x) = f (x̃) + f ′ ·∆x + r

with asymptotically vanishing remainder r = r(x̃,∆x) ∈ IR , such that

lim
∆x→0

r

‖∆x‖2
= 0 , where ‖v‖2 ≡

√
vT · v =

√√√√n−1∑
i=0

v2
i

denotes the Euclidean norm of the vector v ∈ IRn.

f ′ = f ′(x) =
df

dx
(x) : IRn → IRn

is called the gradient of f .

,
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Differentiability
Gradient

Let f : IRn → IR be differentiable at x̃ ∈ IRn. Then

f ′(x̃) =


dy
dx0

...
dy

dxn−1


where y = f (x) and

dy

dxi
=

dy

dxi
(x̃) = lim

∆x→±0

f (x̃ + ∆x · ei )− f (x̃)

∆x
<∞

with the i-th Cartesian basis vector in IRn denoted by ei .

,
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Gradient
Example

Let
y = f (x) = esin(‖x‖2

2) = esin(xT ·x) = esin(
∑n−1

i=0 x2
i )

Differentiation wrt. x yields the gradient

f ′(x) =
(

2 · xj · cos
(∑n−1

i=0 x2
i

)
· esin(

∑n−1
i=0 x2

i )
)
j=0,...,n−1

,
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Differentiability
F : IRn → IRm

Let IRn be the domain of the multivariate vector function F : IRn → IRm. The
function F is differentiable at point x̃ ∈ IRn if there is a matrix F ′ ∈ IRm×n such
that

F (x̃ + ∆x) = F (x̃) + F ′ ·∆x + r

with asymptotically vanishing remainder r = r(x̃,∆x) ∈ IRm, such that

lim
∆x→0

‖r‖2

‖∆x‖2
= 0 .

The matrix

F ′ = F ′(x) =
dF

dx
(x) : IRn → IRm×n

is called the Jacobian of F .

,
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Differentiability
Jacobian

Let F : IRn → IRn be differentiable at x̃ ∈ IRn. Then

F ′(x̃) =


dy0

dx0
. . . dy0

dxn−1

...
...

dyn−1

dx0
. . . dyn−1

dxn−1


where yj = Fj(x) and

dyj
dxi

=
dyj
dxi

(x̃) = lim
∆x→±0

Fj(x̃ + ∆x · ei )− Fj(x̃)

∆x
<∞ .

,
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Differentiability
Hessian

Let f : IRn → IR be differentiable at x̃ ∈ IRn. It is twice differentiable at x̃ if
f ′ : IRn → IRn is differentiable at x̃.

The matrix

f ′′(x̃) =


d2y
dx2

0
. . . d2y

dx0dxn−1

...
...

d2y
dxn−1dx0

. . . d2y
dx2

n−1


is called the Hessian matrix of f at point x̃.

If f ′ is continuous [at some point, within some subdomain], then f is called
continuously differentiable [at this point, within this subdomain].

If f is twice continuously differentiable at x̃, then its Hessian is symmetric, i.e,
f ′′(x̃) = f ′′(x̃)T .

Hessians of multivariate vector functions F : IRn → IRm are 3-tensors. So are
third derivatives of f , and so forth.

,
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Chain Rule
F : IRn → IRm

Let y = F (x) : IRn → IRm be such that

y = F (x) = F2(F1(x), x) = F2(z, x)

with (continuously) differentiable F1 : IRn → IRp and
F2 : IRp × IRn → IRm.

x

z[F1]

y[F2]

∂F2

∂x

dF1

dx

dF2

dz

Then F is continuously differentiable over IRn and

dF

dx
(x̃) =

dF2

dx
(z̃, x̃) =

dF2

dz
(z̃, x̃) · dF1

dx
(x̃) +

∂F2

∂x
(z̃, x̃)

for all x̃ ∈ IRn and z̃ = F1(x̃).

Notation: ∂F2

∂x partial derivative; dF2

dx total derivative

,
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Chain Rule
Directed Acyclic Graph

A composite function y = F (x) such as

z = F1(x)

y = F2(z, x)

induces a directed acyclic graph (DAG) G = (V ,E ) with
vertices in V representing variables (e.g, x, z and y) and
with local (partial) derivatives associated with the edges
in E . x

z[F1]

y[F2]

∂F2

∂x

dF1

dx

dF2

dz

F ′(x) ≡ dy

dx
=

∑
path∈DAG

∏
(i,j)∈path

∂vj
∂vi

=
∂y

∂x
+
∂y

∂z
· ∂z
∂x

=
∂y

∂x
+

dy

dz
· dz
dx

,
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Chain Rule
Directional Derivative

The directional derivative (Jacobian× vector product)

y(1) =
dF

dx
(x̃) · x(1)

of y = F (x) at x̃ can be represented as the derivative of
y = y(x(ċ)) with respect to (wrt.) an auxiliary variable
ċ ∈ IR at x̃ such that

dx

dċ
= x(1) .

The chain rule yields

y(1) ≡ dF

dċ
=

dF

dx
(x̃) · dx

dċ
=

dF

dx
(x̃) · x(1) .

Directional derivatives are marked with the superscript
∗(1).

ċ

x

z[F1]

y[F2]

x(1)

∂F2

∂x

dF1

dx

dF2

dz

,
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Calculus II
Single Assignment Code ⇒ DAG

In scientific computing the multivariate vector functions

F : IRn → IRm : y = F (x)

of interest are implemented as differentiable computer programs.

Such programs decompose into sequences of q = p + m differentiable elemental
functions ϕj evaluated as a single assignment code1

vj = ϕj(vk)k≺j for j = n, . . . , n + q − 1

and where vi = xi for i = 0, . . . , n − 1, yk = vn+p+k for k = 0, . . . ,m − 1 and
k ≺ j if vk is an argument of ϕj .

A DAG G = (V ,E ) is induced. Partial derivatives of the elemental functions
wrt. their arguments are associated with the corresponding edges.

1Variables are written once.
,
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Single Assignment Code ⇒ DAG
Example

y = f (x) = esin(‖x‖2
2) = esin(xT ·x) = esin(

∑n−1
i=0 x2

i ), n = 2

v0 = x0

v1 = x1

v2 = v2
0 ;

dv2

dv0
= 2 · v0

v3 = v2
1 ;

dv3

dv1
= 2 · v1

v4 = v2 + v3;
dv4

dv2
=

dv4

dv3
= 1

v5 = sin(v4);
dv5

dv4
= cos(v4)

v6 = ev5 ;
dv6

dv5
= v6

y = v6

v0 v1

v2[·] v3[·]

v4[+]

v5[sin]

y [exp]

2 · v0 2 · v1

1 1

cos(v4)

v6

,
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Directional Derivative
DAG×Vector Product

The DAG G = G (x̃) of F induces a linear mapping (generalized Jacobian×
Vector Product)

G : IRn → IRm : y(1) = G · x(1)

defined by the chain rule applied to F (x(ċ)) at x = x̃ and for

dx

dċ
≡ x(1) ∈ IRn .

This DAG× vector product is evaluated as

v
(1)
i =

∑
j≺i

dϕi (vk)k≺i
dvj

· v (1)
j for i = n, . . . , n + q − 1

and where v
(1)
i = x

(1)
i for i = 0, . . . , n− 1 and y

(1)
k = v

(1)
p+k for k = 0, . . . ,m− 1.

,
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DAG×Vector Product
Example

y = f (x) = esin(‖x‖2
2) = esin(xT ·x) = esin(

∑n−1
i=0 x2

i ), n = 2

v0 = x0 v
(1)
0 = x

(1)
0

v1 = x1 v
(1)
1 = x

(1)
1

v2 = v2
0 v

(1)
2 = 2 · v0 · v (1)

0

v3 = v2
1 v

(1)
3 = 2 · v1 · v (1)

1

v4 = v2 + v3 v
(1)
4 = v

(1)
2 + v

(1)
3

v5 = sin(v4) v
(1)
5 = cos(v4) · v (1)

4

v6 = ev5 v
(1)
6 = v6 · v (1)

5

y = v6 y (1) = v
(1)
6

ċ

v0 v1

v2[·] v3[·]

v4[+]

v5[sin]

y [exp]

v
(1)
0 v

(1)
1

2 · v0 2 · v1

1 1

cos(v4)

v6

,
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Taylor Series
nD Case

I f : IRn → IR

f (x + ∆x) = f (x) + f ′(x)T ·∆x +
1

2
·∆xT · f ′′(x) ·∆x + O(‖∆x‖3

2)

I F : IRn → IRm

F (x + ∆x) = F (x) + F ′(x) ·∆x + O(‖∆x‖2
2)

Higher-order terms are omitted to avoid tensor notation.

,
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Linearity
F : IRn → IRm

A function F : IRn → IRm is linear if

I F (a + b) = F (a) + F (b)

I F (α · a) = α · F (a)

for all a,b ∈ IRn and α ∈ IR.

Example: F (x) = M · x with M ∈ IRm×n is linear.

F (a + b) = M · (a + b) = M · a + M · b = F (a) + F (b)

F (α · a) = M · α · a = α ·M · a = α · F (a)

Functions F (x) = M · x + v with v ∈ IRm are called affine.

Affine functions define linear systems m = n as well as linear least-squares
problems m 6= n.

,
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Convexity and Concavity
f : IRn → IR

A function f : IRn → IR is convex if and only if its Hessian f ′′ is positive
semi-definite for all x ∈ IRn, i.e, ∀0 6= v ∈ IRn

vT · f ′′(x) · v ≥ 0 .

One can show that f is strictly convex over IRn if f ′′ is positive definite for all
x ∈ IRn, i.e,

vT · f ′′(x) · v > 0 .

The other direction does not hold in general.

Similarly, concavity is defined in terms of negative (semi-)definiteness of the
Hessian.

The concepts can be generalized for multivariate vector functions
F : IRn → IRm.

,
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Calculus II
Summary and Next Steps

Summary

I continuity

I differentiability

I gradient, Jacobian, Hessian

I chain rule of differential calculus

I partial, total, directional derivative

I directional derivative as DAG × vector product

I Taylor series

Next Steps

I practice DAG × vector product

I Continue the course to find out more ...

,
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