

Data Flow Reversal II

Call Tree Reversal

Uwe Naumann

Informatik 12: Software and Tools for Computational Engineering (STCE)

RWTH Aachen University

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● つくぐ

DAG REVERSAL

Call Tree

CALL TREE REVERSAL

NP Completeness Implementation

DAG REVERSAL

Call Tree

CALL TREE REVERSAL NP Completeness Implementation

Objective

Introduction to CALL TREE REVERSAL as a special case of DATA FLOW REVERSAL

Learning Outcomes

- You will understand
 - ► Formulation of CALL TREE REVERSAL
 - ► NP-completeness of CALL TREE REVERSAL
- You will be able to
 - Design call tree reversals
 - Evaluate costs of call tree reversals

DAG REVERSAL

Call Tree

CALL TREE REVERSAL NP Completeness Implementation

a data flow reversal that uses at most $MEM < \overline{MEM}$ memory units and yields a computational cost of

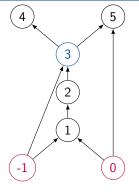
Given a DAG and two integers $C, \overline{MEM} > 0$, is there

The computational cost (COST) is defined as the sum of the number of elemental function evaluations (OPS) to be performed in addition to a single evaluation of the program (requiring $|Z \cup Y|$) and the number of write accesses to persistent memory.

DAG REVERSAL is NP-complete.

▶ U. Naumann: DAG Reversal is NP-Complete. Journal of Discrete Algorithms, Elsevier 2010.

COST < C?



DAG REVERSAL

Call Tree

CALL TREE REVERSAL NP Completeness

Implementation

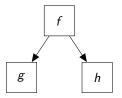
Persistently stored values are also referred to as checkpoints.

The vertex set $V = X \cup Z \cup Y$ of a DAG G = (V, E) decomposes into sources X, intermediate vertices Z and sinks Y such that $X \cap Z \cap Y = \emptyset$.

A call tree T = (N, A) over a DAG G captures the interprocedural data flow of the program represented by G. Nodes in N correspond to subprograms. Subprogram calls are marked by arcs in A.

Subprograms correspond to subgraphs of G.

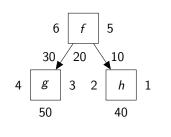
W.l.o.g., data flow reversal of subprograms in store-all (alternatively, recomputeall) mode is assumed to be feasible.



Call Tree

Software and Toxis for Computational Engineering

Call trees are annotated with sizes of checkpoints and of local DAGs as follows:



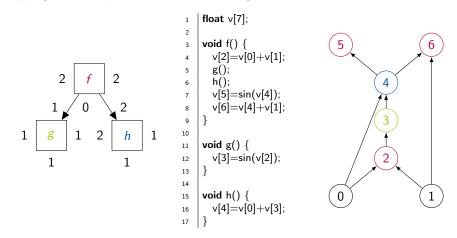
- ► f calls g before h
- sizes of argument checkpoints: f : 6, g : 4, h : 2
- sizes of result checkpoints: f: 5, g: 3, h: 1
- sizes of DAGs f : 60, g : 50, h : 40
- sizes of local DAGs in f :
 - before call of g : 30
 - in between calls of g and h: 20
 - ▶ after call of *h* : 10

For simplicity, we assume identical values for DAG sizes (memory occupied in local store-all mode) and numbers of elemental functions evaluations performed by (parts of) subprograms (e.g, number of vertices in DAGs), e.g, if $G = (V = X \cup Z \cup Y, E)$ is the DAG of f, then |X| = 6, |Y| = 5 and |Z| = 60 - 5 = 55.

Call Tree

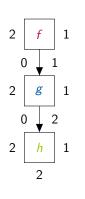
Example 1

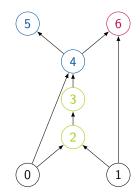
Call trees correspond to partitionings / colorings of the DAG vertices. The mapping is not unique in either direction, e.g.



Call Tree Example 2

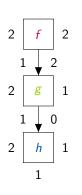
Software and Tools for Computational Engineering



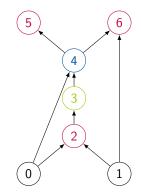


Call Tree Example 3

RWI Software and Tools for Computational Engineering



1



DAG REVERSAL

Call Tree

CALL TREE REVERSAL

NP Completeness Implementation

A call tree reversal is a data flow reversal with checkpoints restricted to subsets of arguments and results of subprograms.

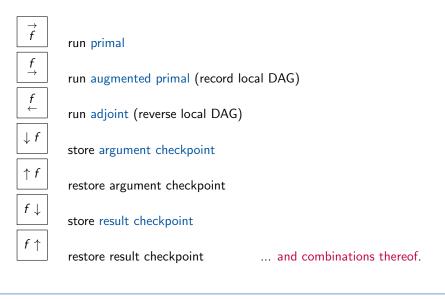
CALL TREE REVERSAL:

Given an annotated call tree over a DAG and two integers $C, \overline{MEM} > 0$. Is there a call tree reversal that uses at most \overline{MEM} memory and costs at most C?

CALL TREE REVERSAL is NP-complete.

► U. Naumann: *Call Tree Reversal is NP-Complete*. In Bischof et. al.: Advances in Automatic Differentiation, LNCSE 64, Springer, 2008.

Notation



A result checkpointing of a call tree T = (N, A) over a DAG G = (V, E) is a data flow reversal which recovers all values (represented by $V = X \cup Z \cup Y$) in reverse order by storing only subsets of results of subprograms (represented by N) in addition to all values represented by X and by recomputing the other values from the stored ones.

Result Checkpointing:

Given a call tree *T* over a DAG $G = (V = X \cup Z \cup Y, E)$ and integers $\overline{MEM}, C > 0$. Is there a result checkpointing for *T* that uses at most \overline{MEM} persistent memory units while costing at most $\overline{MEM} + C$?

$\label{eq:result} \ensult \e$

Proof

Reduction: DAG $G = (V = X \cup Z \cup Y, E) \rightarrow \text{Call Tree } T = (N, A)$

We define a bijection between DAG REVERSAL and RESULT CHECKPOINTING (RESULT CHECKPOINTING inherits the computational complexity of DAG REVERSAL) as follows:

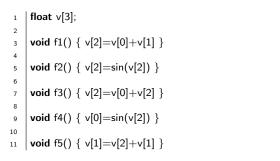
- Vertices in Z ∪ Y represent calls to multivariate scalar functions φ_i, i = |X|,..., |Z ∪ Y| − 1, operating on a global memory space v ∈ ℝ^μ, μ ≤ |V| (elemental subprograms).
- ▶ $|Z_i| = 0$ for $G_i = (V_i = X_i \cup Z_i \cup Y_i, E_i)$ being the DAG of ϕ_i .
- Sequences of subprogram calls need to be reversed in recompute-all mode in order to not exceed the persistent memory bound <u>MEM</u>.

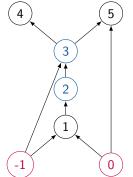
Verification:

A given solution to RESULT CHECKPOINTING is trivially verified in polynomial time by counting the numbers of evaluations of elemental subprograms and of write accesses to memory.

CALL TREE REVERSAL is NP-Complete Proof

Example for reduction from DAG REVERSAL to RESULT CHECKPOINTING $(\overline{MEM} = 4)$:





CALL TREE REVERSAL comprises RESULT CHECKPOINTING. Hence, it cannot be easier.

The following perspective on $\rm CALL\ TREE\ REVERSAL$ was designed with the objective to restrict the search space such that results can be implemented in a rather straight forward fashion.

We

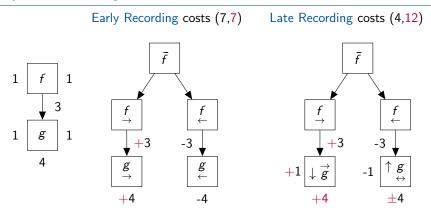
- 1. store all arguments of any subprogram (or none)
- 2. store all results of any subprogram only to avoid recomputation.

Hence, the reversal problem for a call tree T = (N, A) asks for all arcs whether to store the arguments of their target nodes (1) or not (0), i.e,

$$R: E \rightarrow \{0,1\}$$
 .

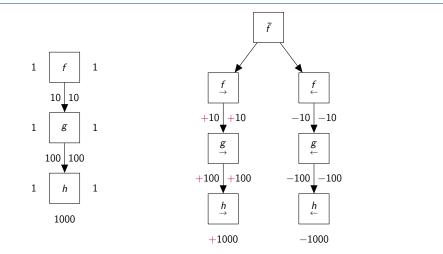
Moreover, nodes to become subject to result checkpointing need to be specified.

Call Reversal Early vs. Late Recording



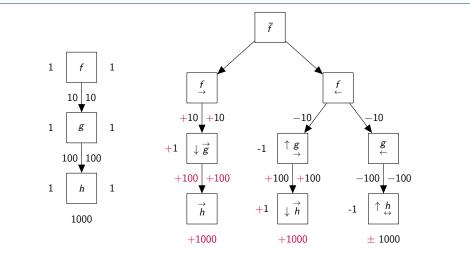
Color coding accesses to memory (black) and contributions to *COST*; mixed colors mark contributions to both, e.g, +4 marks increase in memory requirement by four units (write access). Missing labels are equal to zero. Note: COST = OPS+ write accesses to memory -|V|.

Call Tree Reversal Global Early Recording



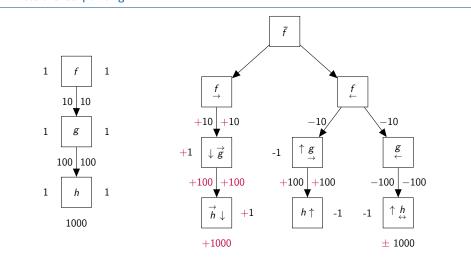
 $R = \{((f,g),0), ((g,h),0)\} \text{ costs } (1220, 1220)$

Call Tree Reversal Global Late Recording



 $R = \{((f,g),1), ((g,h),1)\} \text{ costs } (1110,3422)$

Call Tree Reversal Result Checkpointing

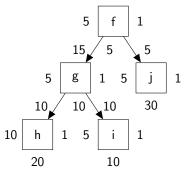


 $R = \{((f,g),1), ((g,h),1)\} \cup \{h\} \text{ costs (1110,2422)}$

Starting from $R = \{ \forall a \in A : 0 \}$ switch call reversal modes from 0 to 1 in increasing / decreasing orders of local DAG sizes.

Starting from $R = \{ \forall a \in A : 1 \}$ switch call reversal modes from 1 to 0 in increasing / decreasing orders of local DAG sizes.

Exercises: Consider the remaining two options for the above example and ...



DAG REVERSAL

Call Tree

CALL TREE REVERSAL NP Completeness Implementation

Summary

- Introduction to CALL TREE REVERSAL as a special case of DATA FLOW REVERSAL
- ► NP-completeness of CALL TREE REVERSAL
- Design call tree reversals and their costs

Next Steps

- Practice design of call tree reversals and evaluation of their costs.
- Continue the course to find out more ...