
Extended Jacobian Chain Products

Dynamic Programming for Algorithmic Differentiation

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University



Contents

Objective and Learning Outcomes

Recall
Chain Rule of Differential Calculus
Dynamic Programming
Algorithmic Differentiation

Extended Jacobian Chain Products
Trace
Case Study
Implementation

Summary and Next Steps

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 2



Outline

Objective and Learning Outcomes

Recall
Chain Rule of Differential Calculus
Dynamic Programming
Algorithmic Differentiation

Extended Jacobian Chain Products
Trace
Case Study
Implementation

Summary and Next Steps

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 3



Extended Jacobian Chain Products
Objective and Learning Outcomes

Objective

I Introduction to optimization of Jacobian accumulation code by application
of dynamic programming to extended Jacobian chain products.

Learning Outcomes

I You will understand
I definition of trace of a differentiable computer program
I construction of extended Jacobian chain products

I You will be able to
I optimize Jacobian accumulation code by application of dynamic

programming to extended Jacobian chain products

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 4



Outline

Objective and Learning Outcomes

Recall
Chain Rule of Differential Calculus
Dynamic Programming
Algorithmic Differentiation

Extended Jacobian Chain Products
Trace
Case Study
Implementation

Summary and Next Steps

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 5



Recall
Chain Rule of Differential Calculus

Let y = F (x) : IRn → IRm be such that

y = F (x) = F2(F1(x), x) = F2(z, x)

with (continuously) differentiable F1 : IRn → IRp and
F2 : IRp × IRn → IRm.

x

z[F1]

y[F2]

∂F2

∂x

dF1

dx

dF2

dz

Then F is continuously differentiable over IRn and

dF

dx
(x̃) =

dF2

dx
(z̃, x̃) =

dF2

dz
(z̃, x̃) · dF1

dx
(x̃) +

∂F2

∂x
(z̃, x̃)

for all x̃ ∈ IRn and z̃ = F1(x̃).

Deeper nesting yields [sparse] matrix chain products.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 6



Recall
Dynamic Programming for [Sparse] Matrix Chain Products

The number of fused multiply-add (fma) operations required for the evaluation
of a [sparse] matrix chain product

0∏
ν=p−1

Aν = Ap−1 · . . . · A0 for Aν = (aνj,i )
j=0,...,mν−1
i=0,...,nν−1 ∈ IRmν×nν .

can be reduced by dynamic programming

fmak,i =

{
0 k = i

mini≤j<k (fmak,j+1 + fmaj,i + fmak,j,i ) k > i

through tabulating the solutions fmak,i of the subproblems
∏i
ν=k Aν for

k − i = 0, . . . , p and where fmak,j,i is the cost of evaluating Ak,j · Aj,i .

The same idea can be applied to [extended] Jacobian chain products arising
from the chain rule of differential calculus.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 7



Recall
Algorithmic Differentiation

Algorithmic Differentiation (AD) targets multivariate vector functions

F : IRn → IRm : y = F (x)

implemented as differentiable computer programs.

Such programs decompose into sequences of q = p + m differentiable elemental
functions ϕj evaluated as a [incremental] single assignment code

vj = [vj+]ϕj(vk)k≺j for j = 1, . . . , q

and where vi = xi for i = 1− n, . . . , 0, [vj = 0 for i = 1, . . . , p,] yk = vp+k+1

for k = 0, . . . ,m − 1, and k ≺ j if vk is an argument of ϕj .

A DAG G = (V ,E ) is induced. Partial derivatives of the elemental functions
wrt. their arguments are attached as labels to the corresponding edges.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 8



Outline

Objective and Learning Outcomes

Recall
Chain Rule of Differential Calculus
Dynamic Programming
Algorithmic Differentiation

Extended Jacobian Chain Products
Trace
Case Study
Implementation

Summary and Next Steps

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 9



Extended Jacobian Chain Products
Trace

We consider the extended single assignment code

v0 =
(
x 0p 0m

)T
vj = Φj(vj−1) j = 1, . . . , q

with extended elemental functions Φj , j = 1, . . . , q, whose k-th entry is defined
as

[Φj(v)]k ≡

{
vj + ϕj(vi )i≺j if k = j

vk otherwise

yielding the trace Φ : IRn+q → IRn+q as(
x v1 . . . vp y

)T
= vq = Φ(v0) = Φq(Φq−1(. . .Φ1(v0) . . .))

The trace computes the function value y = F (x) while keeping all intermediate
values vj , j = 1, . . . , p. It induces a corresponding trace DAG.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 10



Trace
Chain Rule and Jacobian

By the chain rule, the Jacobian of the trace can be evaluated as the extended
local Jacobian chain

dF

dv
(v0) =

dΦq

dv
(vq−1) · dΦq−1

dv
(vq−2) · . . . · dΦ1

dv
(v0)

where entries of the extended local Jacobians are defined as

[
dΦj

dv
(vj−1)

]
i,k

=


1 if k = i
dϕi

dvk
if k ≺ i

0 otherwise .

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 11



Trace
Extraction of Jacobian

Note that dF
dx = Qm · dΦ

dv (v0) · PT
n where

Qm ∈ IRm×(n+q) extracts the last m rows of dΦ
dv (v0) when multiplied from the

left, that is,
Qm =

(
0m×(n+p) Im

)

PT
n ∈ IR(n+q)×n extracts the first n columns of dΦ

dv (v0) when multiplied from
the right, that is,

Pn =
(
In 0n×(p+m)

)

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 12



Trace
Elemental Extended Local Jacobians

Distribution of individual scalar local derivatives over elemental extended local
Jacobians yields

[
dΦj,i

dv

]
l,k

=


1 if l = k
dϕj

dvi
if l = j and k = i

0 otherwise .

implying
dΦj

dv
=
∏
i≺j

dΦj,i

dv

Note that the product of two elemental extended local Jacobians
dΦl,k

dv and
dΦj,i

dv is commutative if and only if k 6= j (i = l impossible due to topological
order of scalar variables within the single assignment code).

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 13



Extended Local Jacobian Chains
Elemental, Tangent and Adjoint Chain

Elemental Extended Local Jacobian Chain

dΦ

dv
=

1∏
j=q

∏
i≺j

dΦj,i

dv

Local commutativity yields a large number of variants including ...

Extended Local Tangent Chain

dΦ

dv
=

1∏
j=q

dΦj

dv

Extended Local Adjoint Chain

dΦ

dv
=

0∏
j=q−1

dΦ̄j

dv
where

dΦ̄j

dv
=
∏
i�j

dΦi,j

dv

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 14



Extended Local Jacobian Chains
Dynamic Programming

Multiplication of the various extended extended local Jacobian chains with Qm

and PT
n yields zero rows and columns the removal of which results in a pruned

sparse rectangular extended local Jacobian chain.

Extraction of the corresponding live section of the trace DAG amounts to
keeping all edges/vertices lying on paths that connect xi , i = 0, . . . , n − 1 with
yj , j = 0, . . . ,m − 1, and discarding all others.

The pruned extended local Jacobian chain yields two dynamic programming
formulations:

1. optimal bracketing of rectangular chain assuming dense factors;

2. optimal bracketing of sparse chain.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 15



Case Study
Lion

Let Aj ≡ dΦj

dv and Aj,i ≡ dΦj,i

dv in

Ã6 · Ã5 · Ã4 · A3 · A2

with Ã6 = A6,3 · A5,3 · A4,3, Ã5 = A7,2, and Ã4 = A7,3. 0 1

2

3

4 5 6 7

Pruning yields

1

1

1

1

1

1

1

1

1

1

1

1

1

1x

x

x

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

x 0

0

0

1

1

1

1

1

1

1

1

x

1

1

1

1

1

1

1

x

1

0 0 0

0 0

0

0

0 0

000

0

01

1

1

1

1

1

1

xx

1

Application of dynamic programming to the pruned sparse chain yields the
bracketing

Ã6 · ((Ã5 · (Ã4 · A3)) · A2)

with a Jacobian accumulation cost of 11 fma.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 16



Implementation
Comments

As always, the challenge is for the special treatment of the combinatorics to
pay off.

How to use the above to generate efficient Jacobian code?

Apply to static (run time invariant) parts of the code, i.e,

I build local DAGs

I derive pruned extended local Jacobian chain

I run dynamic programming algorithm

I use result to generate local Jacobian code

I run native optimizing compiler.

Combinatorial optimization of derivative code is useful in the context of source
transformation.

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 17



Outline

Objective and Learning Outcomes

Recall
Chain Rule of Differential Calculus
Dynamic Programming
Algorithmic Differentiation

Extended Jacobian Chain Products
Trace
Case Study
Implementation

Summary and Next Steps

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 18



Extended Jacobian Chain Products
Summary and Next Steps

Summary

I Introduction to optimization of Jacobian accumulation code by application
of dynamic programming to extended Jacobian chain products.

I Definition of trace of a differentiable computer program.

I Construction of extended Jacobian chain products.

Next Steps

I Practice derivation of extended Jacobian chain products.

I Continue the course to find out more ...

,

Extended Jacobian Chain Products, info@stce.rwth-aachen.de 19


	Objective and Learning Outcomes
	Recall
	Chain Rule of Differential Calculus
	Dynamic Programming
	Algorithmic Differentiation

	Extended Jacobian Chain Products
	Trace
	Case Study
	Implementation

	Summary and Next Steps

