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Newton’s Method I
Objective and Learning Outcomes

Objective

I Introduction to Newton’s method for scalar functions.

Learning Outcomes

I You will understand
I roots of nonlinear functions
I linearization
I convergence
I stationary points and local optima

I You will be able to
I implement Newton’s method
I investigate convergence of Newton’s method.
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Recall
Linearization

The solution of linear equations amounts to simple scalar division. The solution
of nonlinear equations can be challenging.

“Egg-Laying, Wool-Bearing, Milk-Giving Sow”
c©Georg Mittenecker @ Wikipedia

Many numerical methods for nonlinear problems
are built on local (at x̃) replacement of the tar-
get function with a linear (affine; in ∆x) approx-
imation derived from the truncated Taylor series
expansion and “hoping” that

f (x̃ + ∆x) ≈ f (x̃) + f ′(x̃) ·∆x ,

i.e, hoping for a reasonably small remainder.

The solution of a sequence of linear problems is then expected to yield an
iterative approximation of the solution to the nonlinear problem. Newton’s
method is THE example.
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Recall
Intermediate Value Theorem and Bisection

Let y = f (x) be continuous within a neighborhood x + ∆x of x taking values
f (x) and f (x + ∆x) at the endpoints of the interval. Then f takes all values
between f (x) and f (x + ∆x) over the same interval.
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If f (x) and f (x + ∆x) have different signs,
then f has a root within the interval bounded
by x and x + ∆x , i.e, ∃x̃ : f (x̃) = 0.

The simplest possible root finding algorithm
follows from iterative / recursive bisection of
the the interval [x , x + ∆x ].

Unfortunately, the bisection algorithm converges slowly and does not generalize
to higher dimensions. Hence, we are going to investigate superior alternatives.

Note: x̃ not necessarily unique; f can take values outside of [f (x), f (x + ∆x)]
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Newton’s Method
Roots of Nonlinear Equations

Consider a nonlinear equation y = f (x) = 0 at some (starting) point x .

Building on the assumption that f (x + ∆x) ≈ f (x) + f ′(x) ·∆x the root
finding problem for f can be replaced locally by the root finding problem for the
linearization

f̄ (∆x) = f (x) + f ′(x) ·∆x .

The right-hand side is a straight line intersecting the y -axis in
(∆x = 0, f̄ (∆x) = f (x)).

Solution of
f̄ (∆x) = f (x) + f ′(x) ·∆x = 0

for ∆x yields

∆x = − f (x)

f ′(x)

implying f (x + ∆x) ≈ 0.

,
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Newton’s Method
Iterative Algorithm

If the new iterate is not close enough to the root of the nonlinear function, i.e,
|f (x + ∆x)| > ε for some measure of accuracy of the numerical approximation
ε > 0, then it becomes the starting point for the next iteration yielding the
recurrence

x = x − f (x)

f ′(x)

Convergence of this Newton[-Raphson] method is not guaranteed in general.
Damping of the magnitude of the next step may help.

x = x − α · f (x)

f ′(x)
for 0 < α ≤ 1 .

The damping parameter α is often determined by line search (e.g, recursive
bisection yielding α = 1, 0.5, 0.25, . . .) such that decrease in absolute
function value is ensured.

,

Linearization and Newton’s Method I, info@stce.rwth-aachen.de 10



Newton’s Method
Implementation

1 template<typename T> T f(const T &x);
2 template<typename T> T dfdx(const T &x);
3

4 template<typename T>
5 void solve(T& x, const T& eps) {
6 while (fabs(f(x))>eps) x−=f(x)/dfdx(x);
7 }
8

9 int main(int, char ∗v[]) {
10 double x=std::stof(v[1]);
11 solve(x,1e−12);
12 std::cout << ”x=” << x << std::endl
13 << ”f(x)=” << f(x) << std::endl
14 << ”dfdx(x)=” << dfdx(x) << std::endl
15 return 0;
16 }

,

Linearization and Newton’s Method I, info@stce.rwth-aachen.de 11



Newton’s Method
Convergence of Fixed-Point Iteration

Newton’s method can be regarded as a fixed point iteration

x = g(x) = x − f (x)

f ′(x)
.

If at the solution
|g ′(x)| < 1 ,

then there exists a neighborhood containing values of x for which the
fixed-point iteration converges to this solution.

The convergence rate of a fixed-point iteration grows linearly with decreasing
values of |g ′(x)|.

For |g ′(x)| = 0 we get at least quadratic convergence; cubic for
|g ′(x)| = |g ′′(x)| = 0 and so forth.
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Newton’s Method
Formulation as Fixed-Point Iteration

Newton’s method becomes

x = g(x) = x − f (x)

f ′(x)

yielding

g ′(x) = f (x) · f ′′(x)

(f ′(x))2
.

At the solution f (x) = 0 implies g ′(x) = 0. Assuming a simple root (f (x) = 0,
f ′(x) 6= 0) the second derivative of g becomes equal to

g ′′(x) = f ′(x) · f ′′(x)

(f ′(x))2
+ f (x)

=0
· (. . .)

implying quadratic convergence within the corresponding neighborhood of the
solution if f ′′(x) 6= 0 as well as convergence after a single iteration for linear f .

,

Linearization and Newton’s Method I, info@stce.rwth-aachen.de 13



Newton’s Method
Convergence (Example)

Let f (x) = cos(x). from

x = g(x) = x − f (x)

f ′(x)
= x − cos(x)

− sin(x)

follows

g ′(x) = f (x) · f ′′(x)

(f ′(x))2
g ′(x) = cos(x) · − sin(x)

(cos(x))2
.

At x̃ = 1 we get |g ′(x)| ≈ 0.41 and hence convergence to the nearest root at
π
2 ≈ 1.57.

At x̃ = 3 we get |g ′(x)| ≈ 49.21 suggesting divergence. However, the second
iterate x̃ ≈ −4.02 yields |g ′(x)| ≈ 0.69 resulting in convergence to the root
closest to −4.02, that is, − 3·π

2 ≈ −4.71.
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Stationary Points and Local Optima
Conditions

Let y = f (x) be twice continuously differentiable over the domain of interest.

I x̃ is a stationary point (necessary condition for local optimality) of f if

f ′(x̃) ≡ df

dx
(x̃) = 0

I x̃ is a local minimum (sufficient condition for local optimality) of f if

f ′′(x̃) ≡ d2f

dx2
(x̃) > 0 (strict convexity)

I x̃ is a local maximum (sufficient condition for local optimality) of f if

f ′′(x̃) ≡ d2f

dx2
(x̃) < 0 (strict concavity)

f ′′ = 0 indicates a non-simple stationary point.

,
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Stationary Points
Steepest Descent

Consider the nonlinear optimization problem

min
x∈IR

f (x)

for f : IR → IR.

Starting from some initial estimate for the stationary point x̃ the steepest
descent method iteratively takes steps into descent directions. In the scalar
case the choice is between stepping toward −∞ or ∞.

The first derivative f ′(x) indicates local increase (f ′(x̃) > 0) or decrease
(f ′(x̃) < 0) of the the function value.

Aiming for decrease the next step should be toward −∞ if f ′ > 0 or toward ∞
if f ′ < 0. No further local decrease in the function value can be achieved for
f ′ = 0 (necessary optimality condition).

,
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Steepest Descent
Algorithm

The step size is typically damped in order to ensure continued progress toward
minx∈IR f (x) yielding the recurrence

x := x − α · f ′(x) while |f ′(x)| > ε

Comments on line search apply as above.

Validation of a local minimum at x̃ requires f ′′(x̃) > 0. Similarly, a local
maximum is found if f ′′(x̃) < 0.

,
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Steepest Descent
Implementation

1 template<typename T> T f(const T &x);
2 template<typename T> T dfdx(const T &x);
3 template<typename T> T ddfdxx(const T &x);
4

5 template<typename T>
6 void solve(T& x, const T& eps) {
7 T g=dfdx(x), y=f(x), y prev;
8 while (fabs(g)>eps) {
9 y prev=y;

10 double alpha=2.;
11 while (y prev<=y&&alpha>eps) {
12 T x trial=x; alpha/=2;
13 x trial−=alpha∗g; y=f(x trial);
14 }
15 x−=alpha∗g; g=dfdx(x);
16 }
17 }
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Newton’s Method
Local Optima

Consider the nonlinear optimization problem

min
x∈IR

f (x)

for f : IR → IR.

Application of Newton’s method to

f ′(x) = 0

yields

x = x − f ′(x)

f ′′(x)
.

Comments on convergence and line search apply as above.

Validation of a local minimum at x̃ requires f ′′(x̃) > 0. Similarly, a local
maximum is found if f ′′(x̃) < 0.
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Newton’s Method
Local Optima: Implementation

1 template<typename T> T f(const T &x);
2 template<typename T> T dfdx(const T &x);
3 template<typename T> T ddfdxx(const T &x);
4

5 template<typename T>
6 void solve(T& x, const T& eps) {
7 while (fabs(dfdx(x))>eps)
8 x−=dfdx(x)/ddfdxx(x);
9 }
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Newton’s Method I
Summary and Next Steps

Summary

I Newton’s method for scalar functions

I roots of nonlinear equations

I stationary points and local optima

Next Steps

I Inspect sample code.

I Run further experiments.

I Continue the course to find out more ...
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