
Software Lab Computational Engineering Science

Overview of Sample Code and Basic Solution for Systems of Linear Equations

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University

Contents

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 2

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 3

Software Lab CES
Objective and Learning Outcomes

Objective

I Overview of the sample code used as a basis for the tutorial exercises;
introduction to design and implementation of a basic solution
infrastructure for systems of linear equations

Learning Outcomes

I You will understand
I requirements, design, implementation of the sample code
I limitations.

I You will be able to
I download, build and run the sample code.

,

Software Lab CES, info@stce.rwth-aachen.de 4

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 5

Software Lab CES
Overview

We discuss the design of a software for the solution of

I systems of linear equations
I basic implementation enables

I sensitivity analysis by finite differences
I estimation of condition

I type-generic implementation enables
I sensitivity analysis by tangent and adjoint modes of dco/c++
I estimation of condition

I systems of nonlinear equations using linear solver

I systems of explicit ordinary differential equations using nonlinear solver.

Tutorial exercises require modification of the given sample software.

,

Software Lab CES, info@stce.rwth-aachen.de 6

Sample Code
Nonfunctional System Requirements

I use of C++ as programming language

I development and execution under Linux (RWTH Compute Cluster1)

I compilation using g++

I build system using make2

I algorithmic differentiation with dco/c++3

I source code documentation with doxygen4

1https://doc.itc.rwth-aachen.de/display/CC/Home
2https://www.gnu.org/software/make/
3www.nag.co.uk/content/algorithmic-differentiation-software
4http://www.doxygen.nl

,

Software Lab CES, info@stce.rwth-aachen.de 7

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 8

Recall
Direct Solvers for Systems of Linear Equations

Find x ∈ IRn such that A · x = b ∈ IRn implying x = A−1 · b and requiring
A ∈ IRn×n to be invertible. Direct methods include

I LR factorization

A · x = (L · R) · x = L · (R · x) = b⇒ R · x = L−1 · b

with lower unitriangular L ∈ IRn×n (forward substitution) and upper
triangular R ∈ IRn×n (backward substitution)

I QR factorization

A · x = (Q · R) · x = Q · (R · x) = b⇒ R · x = Q−1 · b = QT · b

with orthogonal Q ∈ IRn×n and upper triangular R ∈ IRn×n.

See modules I and II on Linear Algebra

We use Eigen5 for linear algebra.

5eigen.tuxfamily.org
,

Software Lab CES, info@stce.rwth-aachen.de 9

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 10

Analysis
User Requirements

I am looking for a software library for solving systems of linear equations
A · x = b including

I definition, storage and extraction of A ∈ IRn×n and b ∈ IRn

I demonstrated extensible choice of direct linear solvers

I storage and extraction of solution x.

The software should run efficiently on the RWTH Compute Cluster.

Finite difference approximation of first (and higher) derivatives of x wrt. A
and/or b shall be used to estimate the condition of the system as well as for
sensitivity analysis of functions of x (e.g, ‖x‖2) wrt. to perturbations of A
and/or b.

Most likely, it will have to be embedded into other software solutions, e.g, for
the solution of systems of nonlinear equations at some later stage.

,

Software Lab CES, info@stce.rwth-aachen.de 11

Analysis
Use Cases

,

Software Lab CES, info@stce.rwth-aachen.de 12

Analysis
Functional System Requirements

I linear system
I allocation
I deallocation
I fixed element type (T) of elements of A, b, x
I matrix type (MT) for storage of A
I vector type (VT) for storage of b and x
I read/write access routines for A, b, x

I linear solver
I allocation
I deallocation
I solution of linear system
I abstraction for extensibility
I implementation of two direct solvers (e.g, LR and QR factorization)

,

Software Lab CES, info@stce.rwth-aachen.de 13

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 14

Design
Class Model

,

Software Lab CES, info@stce.rwth-aachen.de 15

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 16

Implementation
Library

1 doc // doxygen documentation
2

3 include
4 linear solver.hpp // abstract linear solver
5 linear solver lr.hpp // LR factorization
6 linear solver qr.hpp // QR factorization
7 linear system.hpp // linear system
8

9 lib // libls.a ends up here
10

11 Makefile // top−level build script
12

13 src // implementations
14 linear solver lr.cpp
15 linear solver qr.cpp
16 linear system.cpp
17 Makefile
18

19 UML // UML models using Visual Paradigm

,

Software Lab CES, info@stce.rwth-aachen.de 17

Implementation
linear system.hpp

1 #include <Eigen/Dense>
2

3 class Linear System {
4

5 public:
6 using T=double;
7 using MT=Eigen::Matrix<T,Eigen::Dynamic,Eigen::Dynamic>;
8 using VT=Eigen::Matrix<T,Eigen::Dynamic,1>;
9

10 protected:
11 VT x, b; MT A;
12

13 public:
14 Linear System(int);
15 VT& x(); VT& b(); MT& A();
16 };

,

Software Lab CES, info@stce.rwth-aachen.de 18

Implementation
linear solver[lr].hpp

I linear solver.hpp

1 #include ”linear system.hpp”
2

3 struct Linear Solver {
4 virtual void solve(Linear System&)=0;
5 };

I linear solver lr.hpp

1 #include ”linear system.hpp”
2 #include ”linear solver.hpp”
3

4 class Linear Solver LR : public Linear Solver {
5 public:
6 void solve(Linear System&);
7 };

,

Software Lab CES, info@stce.rwth-aachen.de 19

Implementation
Building

1 OBJ=$(addsuffix .o, $(basename $(wildcard ∗.cpp)))
2 CPPC=g++
3 AR=ar −r
4 CPPC FLAGS=−Wall −Wextra −pedantic −Ofast −march=native
5 INC DIR=../include
6 EIGEN DIR=$(HOME)/Software/Eigen
7

8 libls.a : $(OBJ)
9 $(AR) $@ $ˆ

10 mv $@ ../lib
11

12 %.o : %.cpp
13 $(CPPC) −c $(CPPC FLAGS) −I$(INC DIR) −I$(EIGEN DIR) $< −o $@
14

15 clean :
16 rm −fr $(OBJ)
17

18 .PHONY: clean

,

Software Lab CES, info@stce.rwth-aachen.de 20

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 21

Application
Overview

1 doc // doxygen documentation
2 Doxyfile
3 Makefile
4

5 linear system condition.cpp // test: estimation of system condition
6

7 linear system lr.cpp // test: LR factorization
8

9 linear system qr.cpp // test: QR factorization
10

11 Makefile // top−level build script

,

Software Lab CES, info@stce.rwth-aachen.de 22

Application
QR Factorization

1 #include ”linear system.hpp”
2 #include ”linear solver qr.hpp”
3

4 #include<cassert>
5 #include<iostream>
6

7 int main(int argc, char∗ argv[]) {
8 assert(argc==2); int n=std::stoi(argv[1]);
9 Linear System lsys(n); // allocation

10 lsys.A()=Linear System::MT::Random(n,n); // write access and ...
11 lsys.b()=Linear System::VT::Random(n); // ... random initialization
12 Linear Solver QR lsol; // allocation
13 lsol.solve(lsys); // solve linear system
14 std::cout << ”x=” << lsys.x() << std::endl; // read access
15 return 0; // deallocation (automatically)
16 }

,

Software Lab CES, info@stce.rwth-aachen.de 23

Application
Building

1 EXE=$(addsuffix .exe, $(basename $(wildcard ∗.cpp)))
2 CPPC=g++
3 CPPC FLAGS=−Wall −Wextra −pedantic −Ofast −march=native
4 EIGEN DIR=$(HOME)/Software/Eigen
5 LIBLS DIR=$(PWD)/../libls
6 LIBLS INC DIR=$(LIBLS DIR)/include
7 LIBLS LIB DIR=$(LIBLS DIR)/lib
8 LIBLS=ls
9

10 all : $(EXE)
11

12 %.exe : %.cpp
13 $(CPPC) $(CPPC FLAGS) −I$(EIGEN DIR) −I$(LIBLS INC DIR) −L$(

LIBLS LIB DIR) $< −o $@ −l$(LIBLS)
14

15 clean :
16 rm −fr $(EXE)
17

18 .PHONY: all clean

,

Software Lab CES, info@stce.rwth-aachen.de 24

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 25

Case Study
Condition by Finite Differences

The (relative) condition of A · x = b is evaluated as

cond(A) = ‖A‖2 · ‖A−1‖2 .

From

x = A−1 · b ⇒ dx

db
= A−1

follows a (suboptimal) method for computing cond(A) using finite difference
approximation of A1.

The additional functional requirement

I L2-norm of objects of type MT

is provided by Eigen.

See source code.

,

Software Lab CES, info@stce.rwth-aachen.de 26

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 27

Outlook
Additional User Requirements

I have heard of this cool technique for computing derivatives of arbitrary
differentiable computer programs with machine accuracy (as opposed to finite
differences, where finding a suitable magnitude of the perturbation can be
“painful.” They call it algorithmic differentiation.

One way to implement it is by function and operator overloading for custom
data types in C++. People keep telling me about the world’s best AD software
dco/c++ (:-)). I would like to be able to use it for the computation of A−1 in
the above case study as well as for other applications requiring first and
potentially higher derivatives of x or of functions of x.

See modules I, II and III on Algorithmic Differentiation.

,

Software Lab CES, info@stce.rwth-aachen.de 28

Outlook
Current Limitations

Duplication of source code to be avoided!

,

Software Lab CES, info@stce.rwth-aachen.de 29

Outline

Objective and Learning Outcomes

Overview of Sample Code

Direct Solution of Systems of Linear Equations

Analysis
User Requirements
Use Cases
Functional System Requirements

Design

Implementation

Application

Case Study
Condition by Finite Differences

Outlook: Additional User Requirement and Current Limitations

Summary and Next Steps

,

Software Lab CES, info@stce.rwth-aachen.de 30

Software Lab CES
Summary and Next Steps

Summary

I Overview of the sample code used as a basis for the tutorial exercises

I Discussion of requirements, design and implementation of a basic solution
infrastructure for systems of linear equations

I Discussion of limitations.

Next Steps

I Download, build and run the sample code.

I Inspect the sample code.

I Continue the course to find out more ...

,

Software Lab CES, info@stce.rwth-aachen.de 31

	Objective and Learning Outcomes
	Overview of Sample Code
	Direct Solution of Systems of Linear Equations
	Analysis
	User Requirements
	Use Cases
	Functional System Requirements

	Design
	Implementation
	Application
	Case Study
	Condition by Finite Differences

	Outlook: Additional User Requirement and Current Limitations
	Summary and Next Steps

