

Software Lab Computational Engineering Science

Tutorial Exercises

Uwe Naumann

Informatik 12: Software and Tools for Computational Engineering (STCE) RWTH Aachen University

Contents

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Iterative Linear Solver

- ► Extend LINEAR_SYSTEM with an iterative (e.g, conjugate gradients) solver and use it in NONLINEAR_SYSTEM for the solution of the Newton system.
- ▶ Design at least one scalable (in the dimension of the nonlinear system) case study for run time experiments.
- Compare numerical results and run times with the original solution (direct linear solvers).
- Document your
 - analysis
 - design
 - implementation
 - case studies

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-0

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Sparse Eigen Data Structures and Linear Solvers

- ► Replace Eigen/Dense by Eigen/Sparse¹ in LINEAR_SYSTEM.
- ▶ Design at least one scalable (both in the size of the state **x** and in the number of parameters in **p**) case study for run time experiments in the context of the NONLINEAR_SYSTEM library.
- Compare numerical results and run times with dense version.
- Document your
 - analysis
 - design
 - implementation
 - case studies

¹eigen.tuxfamily.org/dox/group__Sparse__chapter.html

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

- ► Replace dco/c++ by ADOL-C² in NONLINEAR_SYSTEM. Use ADOL-C both for the computation of the Jacobian of the residual within Newton's method and for parameter sensitivity analysis similar to toy_dco.cpp.
- Design at least one scalable (both in the size of the state **x** and in the number of parameters in **p**) case study for run time experiments.
- ightharpoonup Compare numerical results and run times with the dco/c++ version.
- Document your
 - analysis
 - design
 - implementation
 - case studies

²github.com/coin-or/ADOL-C

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Linear Solvers for Linear ODEs

- Extend the implicit solver in ODE_SYSTEM such that parameterized systems of explicit linear ordinary differential equations are solved by a linear (instead of the Newton) solver.
- ► Allow for use of *LL*^T or *LDL*^T factorization in case of known symmetry of the Jacobian of the residual.
- Design at least one scalable (in the dimension of the system) case study for run time experiments.
- Compare numerical results and run times with the original (suboptimal) solution.
- Document your
 - analysis
 - design
 - implementation
 - case studies

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Tangent Sensitivity Analysis of ODEs

- Design a scalable (in the number of free parameters, i.e, in the size of p) case study for ODE_SYSTEM; exchange with group working on Tutorial Exercise 6.
- ▶ Use dco/c++ and ADOL-C for parameter sensitivity analysis of the L_2 -norm of the final state $\|\mathbf{x}\|_2$ of the system, i.e. for the computation of the gradient of $\|\mathbf{x}\|_2$ with respect to \mathbf{p} .
- ▶ Apply both dco/c++ and ADOL-C in tangent mode. Compare numerical results and run times (scaling); exchange with group working on Tutorial Exercise 6.
- Document your
 - analysis
 - design
 - implementation
 - case study

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Adjoint Sensitivity Analysis of ODEs

- ▶ Design a scalable (in the number of free parameters, i.e, in the size of p) case study for ODE_SYSTEM; exchange with group working on Tutorial Exercise 5.
- ▶ Use dco/c++ and ADOL-C for parameter sensitivity analysis of the L_2 -norm of the final state $\|\mathbf{x}\|_2$ of the system, i.e. for the computation of the gradient of $\|\mathbf{x}\|_2$ with respect to \mathbf{p} .
- ▶ Apply both dco/c++ and ADOL-C in adjoint mode. Compare numerical results and run times (scaling); exchange with group working on Tutorial Exercise 6.
- Document your
 - analysis
 - design
 - implementation
 - case study

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-0

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Runge-Kutta Schemes for ODEs

- ► Extend ODE_SYSTEM by at least two explicit Runge-Kutta methods.
- Design at least one scalable (in the size of the state x) case study for ODE_SYSTEM for run time experiments.
- Compare numerical results and run times with those computed by the given (explicit and implicit) Euler methods
- Document your
 - analysis
 - ► design
 - implementation
 - case studies

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Optimization of Parameterized ODEs

- Extend ODE_SYSTEM by a simple gradient descent method for minimizing the L_2 -norm of the final state $\|\mathbf{x}\|_2$ of the system as a function of the free parameters in \mathbf{p} .
- ▶ Use dco/c++ for the computation of the gradient.
- Design at least one scalable (in the number of free parameters, i.e, in the size of p) case study for run time experiments.
- Document your
 - analysis
 - design
 - implementation
 - case studies

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Software and Tools for Computational Engineering

Calibration of Parameterized Nonlinear Systems

- Extend NONLINEAR_SYSTEM by a simple gradient descent method for fitting the final state \mathbf{x} of the system to "observations" (perturbed simulations) $\tilde{\mathbf{x}}$ through calibration of the free parameters \mathbf{p} . Minimize the least-squares objective $\|\mathbf{x} \tilde{\mathbf{x}}\|_2^2$.
- ▶ Use dco/c++ for the computation of the gradient of the objective with respect to p.
- Design at least one scalable (in the number of free parameters, i.e, in the size of p) case study for run time experiments.
- Document your
 - analysis
 - design
 - implementation
 - case studies

Iterative Linear Solve

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-0

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Software and Tools for Computational Engineering

Convex Unconstrained Optimization

- Implement a convex unconstrained optimization method by application of NONLINEAR_SYSTEM to the necessary optimality criterion $\frac{df}{dx}(\mathbf{x}(\mathbf{p}),\mathbf{p})=0\in R^n$ for parameterized objective functions $f=f(\mathbf{x}(\mathbf{p}),\mathbf{p})$ to be specified by the end user.
- ▶ Use dco/c++ in adjoint mode for the computation of the gradient and of the Hessian of the objective with respect to x.
- ▶ Use Eigen for checking the sufficient optimality condition (Hessian $\frac{d^2f}{d\mathbf{x}^2}(\mathbf{x}(\mathbf{p}),\mathbf{p}) \in \mathbf{R}^{n\times n}$ should be positive definite at the stationary point \mathbf{x}^*).
- Design at least one scalable (in the number of free parameters, i.e, in the size of p) case study for run time experiments.
- Document your
 - analysis
 - design
 - implementation
 - case studies