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Sparse Direct Linear Solvers
Objective and Learning Outcomes

Objective

I Introduction to direct LR- and LLT -factorizations of sparse matrices.

Learning Outcomes

I You will understand
I need for prediction and minimization of fill-in
I symbolic factorization methods
I heuristics for elimination games

I You will be able to
I build adjacency graphs of sparse matrices
I apply heuristics

,
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Systems of Linear Equations
Regularity

The following statements are equivalent:

1. A is regular.

2. A solution to A · x = b exists for any b.

3. A solution to A · x = b is unique, if it exists.

4. ∀x : A · x = 0⇒ x = 0

5. the columns (rows) of A are linearly independent

6. the inverse A−1 of A exists and A−1 · A = A · A−1 = In, where In ∈ IRn×n

denotes the identity in IRn, i.e, ∀v ∈ IRn : In · v = v.

7. det(A) 6= 0 (nonzero determinant of A)

,
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Systems of Linear Equations
“Low-Hanging Fruits”

Lower / upper triangular system matrices yield linear systems the solution of
which amounts to simple forward / backward substitution.

1. Lower triangular system by forward substitution, e.g.(
1 0
− 1

3 1

)
·
(
y0

y1

)
=

(
1
1

)
⇒ y =

(
1
4
3

)

2. Upper triangular system by backward substitution, e.g.(
3 1
0 7

3

)
·
(
y0

y1

)
=

(
1
4
3

)
⇒ y =

(
1
7
4
7

)

,
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“Low-Hanging Fruits”
Making of ...

Direct methods for the solution of linear systems aim to represent A as a
product of simpler (e.g, triangular) matrices, e.g,

A = L · R with lower triangular L ∈ IRn×n and upper triangular R ∈ IRn×n

⇒ L · v = b ; R · x = v

A = L · LT with lower triangular L ∈ IRn×n

⇒ L · v = b ; LT · x = v

,
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A = L · R
Derivation

From (
α bT

a A∗

)
=

(
1 0
a1 L∗

)
·
(
α bT

0 R∗

)

with α ∈ IR, a,b ∈ IRn−1 and lower / upper triangular

matricesL∗,R∗ ∈ IR(n−1)×(n−1) follows

a = α · a1 , A∗ = a1 · bT + L∗ · R∗

and hence
a1 =

a

α
L∗ · R∗ = A∗ − a1 · bT .

Fill-in is induced by the rank-1 updates of the sparse A∗. Rows [columns] vanish
identically in a1 · bT if the corresponding entries in a1 [b] are equal to zero.

,
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A = L · R
Example

Let

A =

a b
c

d e

 .

LR-factorization proceeds as follows.
a | b
− − − −

| c
d
a | − bd

a e

→
a b

c
d
a − bd

ac e

 = L− I + R .

Pivots are highlighted.

Rank-1 update with (0, da )T · (b, 0) causes fill-in in first step.

Note zero fill-in through switching first and third rows/columns.

Note triangularity through switching first and second rows/columns.

,
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A = L · R
Going Sparse

A can be represented in RCS format as follows:

a = (a, b, c , d , e)

κ = (0, 1, 1, 0, 2)

ρ = (0, 2, 3, 5)

Knowledge of fill-in generated during LR-factorization allows preallocation of

a = (a, b, c , d , 0, e)

κ = (0, 1, 1, 0, 1, 2)

ρ = (0, 2, 3, 6) .

Expensive memory allocation and handling during LR-factorization can thus be
avoided.

Symbolic methods (no floating-point arithmetic) are used to predict as well as
minimize fill-in.

,
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Symbolic Factorization
Exploitation of Results

The fill-in during LR-factorization is minimized by permuting rows and columns
of A through multiplication of A with permutation matrices. The latter

I are obtained from identity matrices by permuting columns

I are orthogonal, i.e. P−1 = PT

I switch rows in A when multiplied from left: P · A
I switch columns in A when multiplied from right: A · P

Let Pr and Pc be obtained from I through switching columns ir and jr and ic
and jc , respectively. Then, due to

A · x = b ⇒ Pr · A · x = Pr · b
⇒ Pr · A · Pc · P−1

c · x = Pr · b ⇒ Pr · A · Pc · PT
c · x = Pr · b

⇒ Pr · A · Pc · (xT · Pc)T = Pr · b

switching columns in A requires switching of corresponding entries in x.

,
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Minimizing Fill-in
Example

Given: a0,0 a0,1 a0,2

a1,0 a1,1 0
a2,0 0 a2,2

 ⇒ 2 fill-in (l2,1, u1,2)

Wanted: a2,2 0 a2,0

0 a1,1 a1,0

a0,2 a0,1 a0,0

 ⇒ no fill-in

Requires:

I Pr to switch row 0 and 2

I Pc = Pr to switch column 0 and 2

,

Sparse Direct Linear Solvers, info@stce.rwth-aachen.de 14



Fill-in Minimization Problem
Computational Complexity

Find matrices Pr and Pc such that LR-factorization can be performed on
Pr · A · Pc with minimal fill-in.

The fill-in minimization problem is NP-complete [Rose,Tarjan,Gilbert].

Note that arbitrary permutations of rows and columns in A can be expressed as
a sequence of pair-wise row and column switches

Pr · A · Pc = Prk · . . . · Pr1 · A · Pc1 · . . . · Pcl

Heuristics should be cheap; computational overhead potentially to be
compensated by repeated solves on same static sparse data structure (e.g. in
Newton’s method).

We assume that all permutations of interest yield numerically stable versions of
A. Pivoting for numerical stability is assumed to obsolete.

,
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Symbolic Factorization
Adjacency Graph

The adjacency graph of a matrix A ∈ IRn×n is a directed graph

Ga(A) = (V ,E ), V = {0, . . . , n − 1}, E = {(i , j) : ai,j 6= 0 ∧ i 6= j}

Diagonal entries of A are assumed to be nonzero.

Examples: ∗ ∗
∗

∗ ∗

 ∗ ∗ ∗
∗ ∗
∗ ∗



,
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Symbolic Factorization
Vertex Elimination in Ga(A)

One LR factorization step with pivot aj,j , 0 ≤ j < n, can be represented as the
elimination of vertex j in Ga(A).

Vertex j is eliminated by connecting its predecessors with its successors (unless
already connected) followed by the removal of j from Ga(A) together with all
incident edges.

Newly generated edges in Ga(A) correspond to fill-in generated in A.

Examples: ∗ ∗
∗

∗ ∗

 ∗ ∗ ∗
∗ ∗
∗ ∗



,
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Symbolic Factorization
Elimination Game

Find a vertex elimination sequence that minimizes the number of newly
generated edges.

During the elimination game we generate fill edges (i , j) whenever there is a
path from i to j through lower numbered vertices. Hence, equivalently, ...

... find an enumeration of the vertices in Ga(A) such that the number of paths
through lower numbered vertices is minimized.

Examples: ∗ ∗
∗

∗ ∗

 ∗ ∗ ∗
∗ ∗
∗ ∗



,
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Elimination Game
Markowitz Heuristic

The Markowitz heuristic eliminates j if

|Pj | · |Sj | → min .

It can be applied statically to Ga or dynamically to intermediate graphs
constructed during the elimination game.

It needs to be combined with tie-breakers (e.g, [reverse] natural order).

Example: 
∗ ∗
∗

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗


⇒ 3 x fill-in; dynamic Markowitz + reverse natural order ⇒ no fill-in

,
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A = L · LT = RT · R
Derivation

Let A be symmetric positive definite. From(
α aT

a A∗

)
=

(
ρ 0
r RT

∗

)(
ρ rT

0 R∗

)
follows

α = ρ2; aT = ρ · rT ; A∗ = r · rT + RT
∗ · R∗

and hence

ρ =
√
α

r =
a

ρ

RT
∗ · R∗ = A∗ − r · rT .

Fill-in is induced by the rank-1 updates of the sparse A∗. Rows and columns
vanish identically in r · rT if the corresponding entries in r are equal to zero.

,

Sparse Direct Linear Solvers, info@stce.rwth-aachen.de 21



A = L · LT = RT · R
Example

a
b d
c 0 e

 →


√
a

b√
a

d − b2

a
c√
a
− c·b

a e − c2

a


... in symmetric, fill-augmented RCS format:

a = (a, b, d , c , 0, e) , κ = (0, 0, 1, 0, 1, 2) , ρ = (0, 1, 3, 6)

a =

(√
a,

b√
a
, d − b2

a
,
c√
a
,−c · b

a
, e − c2

a

)
κ = (0, 0, 1, 0, 1, 2)

ρ = (0, 1, 3, 6)

,
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Symbolic Factorization
Adjacency Graph

The adjacency graph of a symmetric matrix A ∈ IRn×n is an undirected graph

Ga(A) = (V ,E ), V = {0, . . . , n − 1}, E = {(i , j) : ai,j = aj,i 6= 0 ∧ i 6= j}

Diagonal entries of A are assumed to be nonzero.

Examples: ∗ ∗ ∗
∗ ∗
∗ ∗



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



,
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Symbolic Factorization
The Elimination Game

1. G0 = Ga(A)

2. for i = 1 to n do

2.1 Make all neighbors of i in Gi−1 mutually adjacent.
2.2 Remove i and all edges incident to i .
2.3 The new graph is Gi .

The objective of the elimination game is to enumerate the vertices in Ga(A)
such that the fill-in is minimized.

Example: 
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



,
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Elimination Game
Minimum Degree Heuristic

Eliminate the vertex with the minimal number of neighbors next.

Example: 

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗


⇒ 8 fill edges (within band); minimum degree ordering with natural order as tie-breaker
yields 5 fill edges (within band)

,
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Elimination Game
Nested Dissection Heuristic

I Eliminate vertices in (minimal) vertex separator S (V = V1 ∪ V2 ∪ S ,
V1 ∩V2 ∩ S = ∅) after those in V1 and V2 in order to avoid fill-in between
vertices in V1 and V2.

I Use Minimum Degree heuristic inside of S

I Apply recursively to V1 and V2

Example: 

∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗


⇒ 5 fill edges

,
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Elimination Game
(Reverse) Cuthill-McKee Heuristic

I Perform breadth-first search to minimize band width (fill-in restricted to
band)

I Apply Minimum Degree heuristic at each level. Use natural order as tie
breaker.

Example: 
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗

 →


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗



The order is reversed by the Reverse Cuthill-McKee heuristic, which often yields
numerically more stable factorizations while keeping the same band width.

,
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Sparse Direct Linear Solvers
Summary and Next Steps

Summary

I Introduction to direct LR- and LLT -factorizations of sparse matrices.

I Prediction and minimization of fill-in.

I Symbolic factorization methods.

I Heuristics for elimination games.

Next Steps

I Practice construction of adjacency graphs of sparse matrices.

I Apply heuristics as part of elimination games.

I Continue the course to find out more ...

,
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