

Uwe Naumann

Software and Tools for Computational Engineering Computer Science, RWTH Aachen University Aachen, Germany naumann@stce.rwth-aachen.de www.stce.rwth-aachen.de

and

The Numerical Algorithms Group Ltd. Oxford, United Kingdom Uwe.Naumann@nag.co.uk www.nag.co.uk

Motivation

First-Order Tangent and Adjoint Code by Overloading First-Order Tangent Code First-Order Adjoint Code

Second-(and Higher-)Order Tangent and Adjoint Code by Overloading Second-Order Tangent Code Second-Order Adjoint Code

Outlook

Conclusion

Multivariate Vector Function (Example)

Motivation

◆□ → < 部 → < 回 → < 回 → < 回 → < 回 → < ○ へ ○ 4/202

m

Some recently published work ...

- F. Gremse, U.N., et al.: Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography. Theranostics 4(10):960–971, Ivyspring International Publisher 2014.
- A. Vlasenko, U.N., et al.: Estimation of Data Assimilation Error: A Shallow-Water Model Study. Monthly Weather Review 142:2502–2520, 2014.
- M. Towara and U.N.: A Discrete Adjoint Model for OpenFOAM. Procedia Computer Science 18:429-438, Elsevier 2013.
- U. Merkel, U.N., et al.: Reverse engineering of initial and boundary conditions with Telemac and algorithmic differentiation. WASSERWIRTSCHAFT 103(12):22–27, Springer 2013.
- R. Hannemann-Tamás, U.N., et al.: First- and Second-Order Parameter Sensitivities of a Metabolically and Isotopically Non-Stationary Biochemical Network Model, Electronic Proceedings of the 9th International Modelica Conference, Modelica Association 2012.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $T = T(t, x, c(x)) : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is given as the solution of the 1D diffusion equation

 $\frac{\partial T}{\partial t} = c(x) \cdot \frac{\partial^2 T}{\partial x^2}$

over the domain $\Omega = [0, 1]$ and with initial condition T(0, x) = i(x) for $x \in \Omega$ and Dirichlet boundary $T(t, 0) = b_0(t)$ and $T(t, 1) = b_1(t)$ for $t \in [0, 1]$.

The numerical solution is based on a central finite difference / implicit (backward) Euler integration scheme that exploits linearity of the residual r in T (single evaluation of constant Jacobian $\frac{\partial r}{\partial T}$ and factorization).

We aim to analyze sensitivities of the predicted T(x, c(x)) with respect to c(x) or even calibrate the uncertain c(x) to given observations O(x) for T(x, c(x)) at time t = 1 by solving the (possibly constrained) least squares problem

$$\min_{c(x)} f(c(x), x) \quad \text{where } f \equiv \int_{\Omega} \left(T(1, x, c(x)) - O(x) \right)^2 dx.$$

Assuming a spatial discretization of Ω with *n* grid points we require

$$rac{\partial f}{\partial c} = rac{\partial f}{\partial \mathcal{T}(1)} \cdot rac{\partial \mathcal{T}(1)}{\partial c} \in \mathbb{R}^n \quad (o ext{ scalar adjoint integration at } \mathcal{O}(1))$$

and possibly

$$\frac{\partial^2 f}{\partial c^2} \in \mathbb{R}^{n \times n} \quad (\rightarrow \text{ 2nd-order vector adjoint integrations at } O(n))$$

For differentiation, is there anything else? Perturbing the inputs – can't imagine this fails. I pick a small Epsilon, and I wonder ...

from: "Optimality" (Lyrics: Naumann; Music: Think of Fool's Garden's "Lemon Tree") in Naumann: The Art of Differentiating Computer Programs. An Introduction to Algorithmic Differentiation. Number 24 in Software, Environments, and Tools, SIAM, 2012. Page xvii

11 / 202

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Naive application of Algorithmic Differentiation (AD) tool dco/c++ yields:

$$\frac{\partial f}{\partial c} (n=300, m=50)$$

$$\boxed{\begin{array}{c} central FD & adjoint AD \\ run time (s) & 15.2 & 0.7 \\ \hline \\ \partial c^2 \\ (n=100, m=50) \\ \hline \\ run time (s) & 63.6 & 3.9 \\ \hline \\ \end{array}}$$

$$\begin{pmatrix} y=f(x) \\ y=f$$

... while ignoring accuracy for the time being ...

nag

We aim to price a simple European Call option written on an underlying $S = S(t) : \mathbb{R}^+ \to \mathbb{R}^+$, described by the SDE

 $dS(t) = S(t) \cdot r \cdot dt + S(t) \cdot \sigma(t, S(t)) \cdot dW(t)$

with time $t \ge 0$, maturity T > 0, strike K > 0, constant interest rate r > 0, volatility $\sigma = \sigma(t, S) : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$, and Brownian motion $W = W(t) : \mathbb{R}^+ \to \mathbb{R}^+$. The value of a European call option driven by S is given by the expectation

 $V = \mathbb{E}e^{-r \cdot T} \cdot (S(T) - K)^+$

for given interest r, strike K, and maturity T. It can be evaluated using Monte Carlo simulation.

Alternatively, by the Feynman-Kac theorem, V can be computed by solving the PDE

$$\frac{\partial V}{\partial t} + r \cdot S \cdot \frac{\partial V}{\partial S} + \frac{1}{2} \cdot S^2 \cdot \sigma \cdot \frac{\partial^2 V}{\partial S^2} - r \cdot V = 0$$

for t < T, S > 0, and initial (actually, terminal) condition

$$V(T,S) = (S-K)^+$$

and asymptotic boundary conditions

$$\lim_{S \to \infty} V = e^{-r \cdot (T-t)} \cdot (S(t) - K)$$
$$\lim_{S \to 0} V = 0.$$

We compare the computation of the gradient of the option price $V \in \mathbb{R}^+$ wrt. the problem parameters (K, S(0), r, T, and the variable number of parameters of our "made up" local volatility surface) by finite differences with adjoint code based on dco/c++ ...

PDE Scenario:

- size of gradient: n = 222
- asset price grid points: 1000
- time grid points: 360

	primal	central FD	adjoint AD
Runtime (sec.)	0.5	175	6

- (: -() prohibitive run time of FD
- (: –)) gradient by "white-box" [:-)] dco/c++ adjoint at cost of approx. $12 \sim O(1)$ function evaluations (as opposed to $350 \sim O(n)$)
- (: -() low-quality sensitivity information by FD (nan ...)
- (:-)) sensitivity information with machine accuracy by dco/c++ adjoint

MITgcm, (EAPS, MIT)

in collaboration with ANL, MIT, Rice, UColorado

J. Utke, U.N. et al: OpenAD/F: A modular, open-source tool for automatic differentiation of Fortran codes . ACM TOMS 34(4), 2008.

Plot: A tangent computation / finite difference approximation for 64,800 grid points at 1 min each would keep us waiting for a month and a half ... :-(((We can do it in less than 10 minutes thanks to adjoints computed by a differentiated version of the MITgcm :-)

nag

We consider implementations of multivariate vector functions

 $F: D_F \subseteq \mathbb{R}^n \to I_F \subseteq \mathbb{R}^m: \mathbf{y} = F(\mathbf{x})$

as computer programs. F assumed to be (k times) continuously differentiable over their entire (open) domain¹ implying the existence of the Jacobian (Hessian etc.)

$$abla F(\mathbf{x}) \equiv \frac{\partial F}{\partial \mathbf{x}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{m \times n}$$

the individual columns of which can be approximated at all points $\mathbf{x}^* \in D_F$ by (forward, backward, central) finite difference quotients as follows:

$$\nabla F(\mathbf{x}^*) \approx_1 \left(\frac{F(\mathbf{x}^* + h \cdot \mathbf{e}_i) - F(\mathbf{x}^*)}{h} \right)_{i=0}^{n-1} \approx_1 \left(\frac{F(\mathbf{x}^*) - F(\mathbf{x}^* - h \cdot \mathbf{e}_i)}{h} \right)_{i=0}^{n-1}$$
$$\approx_2 \left(\frac{F(\mathbf{x}^* + h \cdot \mathbf{e}_i) - F(\mathbf{x}^* - h \cdot \mathbf{e}_i)}{2 \cdot h} \right)_{i=0}^{n-1}$$

¹to be relaxed later

Obviously,

$$abla F(\mathbf{x}^*) \cdot \mathbf{x}^{(1)} pprox rac{F(\mathbf{x}^* + \mathbf{h} \cdot \mathbf{x}^{(1)}) - F(\mathbf{x}^*)}{\mathbf{h}}$$

with element-wise multiplication and division and where $\mathbf{h} \in \mathbb{R}^n$ contains suitable perturbations² for the x_i , i = 0, ..., n - 1.

Alternatively,

$$\nabla F(\mathbf{x}^*) \cdot \mathbf{x}^{(1)} \approx \frac{F(\mathbf{x}^*) - F(\mathbf{x}^* - \mathbf{h} \cdot \mathbf{x}^{(1)})}{\mathbf{h}}$$
$$\nabla F(\mathbf{x}^*) \cdot \mathbf{x}^{(1)} \approx \frac{F(\mathbf{x}^* + \mathbf{h} \cdot \mathbf{x}^{(1)}) - F(\mathbf{x}^* - \mathbf{h} \cdot \mathbf{x}^{(1)})}{2 \cdot \mathbf{h}}$$

or

 $^2 {\rm e.g.}~h_i = \sqrt{\epsilon} \cdot |x_i|$ with machine epsilon ϵ

W.l.o.g., let m = 1. For $x = x^0 + h$ we get

$$f(x^{0}+h) = f(x^{0}) + \frac{\partial f}{\partial x}(x^{0}) \cdot h + \frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x^{2}}(x^{0}) \cdot h^{2} + \frac{1}{3!} \cdot \frac{\partial^{3} f}{\partial x^{3}}(x^{0}) \cdot h^{3} + \dots$$

and similarly for $x = x^0 - h$

$$f(x^0 - h) = f(x^0) - \frac{\partial f}{\partial x}(x^0) \cdot h + \frac{1}{2!} \cdot \frac{\partial^2 f}{\partial x^2}(x^0) \cdot h^2 - \frac{1}{3!} \cdot \frac{\partial^3 f}{\partial x^3}(x^0) \cdot h^3 + \dots$$

Truncation after the respective first derivative terms yields scalar univariate versions of forward and backward finite difference quotients, respectively. For 0 < h << 1 the truncation error is dominated by the value of the h^2 term which implies that only accuracy up to the order of $h (= h^1$ and hence first-order accuracy) can be expected.

Second-order accuracy (\approx_2) follows immediately from the previous Taylor expansions. Their subtraction yields

$$f(x^{0} + h) - f(x^{0} - h) =$$

$$f(x^{0}) + \frac{\partial f}{\partial x}(x^{0}) \cdot h + \frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x^{2}}(x^{0}) \cdot h^{2} + \frac{1}{3!} \cdot \frac{\partial^{3} f}{\partial x^{3}}(x^{0}) \cdot h^{3} + \dots -$$

$$(f(x^{0}) - \frac{\partial f}{\partial x}(x^{0}) \cdot h + \frac{1}{2!} \cdot \frac{\partial^{2} f}{\partial x^{2}}(x^{0}) \cdot h^{2} - \frac{1}{3!} \cdot \frac{\partial^{3} f}{\partial x^{3}}(x^{0}) \cdot h^{3} + \dots)$$

$$= 2 \cdot \frac{\partial f}{\partial x}(x^{0}) \cdot h + \frac{2}{3!} \cdot \frac{\partial^{3} f}{\partial x^{3}}(x^{0}) \cdot h^{3} + \dots$$

Truncation after the first derivative term yields the scalar univariate version of the central finite difference quotient. For small values of h the truncation error is dominated by the value of the h^3 term which implies that only accuracy up to the order of h^2 (second-order accuracy) can be expected.

For example, let

$$y = \left(\sum_{i=0}^{n-1} x_i^2\right)^2$$

nag

20 / 202

```
be implemented in C++ as
```

```
void f(int n, double *x, double& y) {
    int i=0;
    while (i<n) {
        x[i]=x[i]*x[i];
        i=i+1;
    }
    i=0;
    while (i<n) {
        if (i==0)
            y=x[i];
        else
            y=y+x[i];
        i=i+1;
    }
    y=y*y;
}</pre>
```


We are looking for a routine fg(...) returning for a given vector x of length n the value y of f and its gradient g.

```
int main() {
    const int n=5;
    double x[n],y,g[n];
    cout.precision(15);
    for (int i=0;i<n;i++) x[i]=cos(i);
    fg(n,x,y,g);
    cout << y << endl;
    for (int i=0;i<n;i++) cout << g[i] << endl;
    return 0;
}</pre>
```


21 / 202

nag

Live:

```
implementation of fg for given
void f(int n, double *x, double& y) {
    ...
}
```

run for increasing values of n

< □ > < ⑦ > < 言 > < 言 > こ 差 > う < ℃ 22/202

A forward finite difference approximation of the gradient can be computed alongside with the function value as follows:

```
void fg(int n, double *x, double &y, double *g) {
   double *x.ph = new double[n];
   double y.ph=0;
   for (int j=0;j<n;j++) x.ph[j]=x[j];
    f(n,x-ph,y);
   for (int i=0;i<n;i++) {
      for (int j=0;j<n;j++) x.ph[j]=x[j];
      double h=(x[i]==0) ? sqrt(DBL_EPSILON) : sqrt(DBL_EPSILON)*abs(x[i]);
      x.ph[i]+=h;
      f(n,x-ph,y-ph);
      g[i]=(y.ph-y)/h;
   }
   delete [] x.ph;
}</pre>
```


- ... directional derivatives with machine accuracy, thus, avoiding issues due to truncation;
- ... products of the transposed Jacobian with a vector, thus, eliminating the size of the input vector as a parameter of the relative computational cost

$$\mathcal{R} = rac{Cost(
abla F^{ op} \cdot \mathbf{v})}{Cost(F)}, \quad \mathbf{v} \in \mathbb{R}^m$$

The Jacobian is a linear operator $\nabla F : \mathbb{R}^n \to \mathbb{R}^m$.

Its adjoint is defined as $(\nabla F)^* : \mathbb{R}^m \to \mathbb{R}^n$ where

 $<(\nabla {\textit{F}})^* \cdot \textbf{y}_{(1)}, \textbf{x}^{(1)} >_{\mathbf{R}^n} = <\textbf{y}_{(1)}, \nabla {\textit{F}} \cdot \textbf{x}^{(1)} >_{\mathbf{R}^m} \quad,$

and where $< ., . >_{\mathbf{R}^n}$ and $< ., . >_{\mathbf{R}^m}$ denote appropriate scalar products in \mathbb{R}^n and \mathbb{R}^m , respectively.

Theorem

 $(\nabla F)^* = (\nabla F)^T.$

$$< (\nabla F)^{\mathsf{T}} \cdot {\boldsymbol{\mathsf{y}}}_{(1)}, {\boldsymbol{\mathsf{x}}}^{(1)} >_{\mathrm{R}^{\mathsf{n}}} = < {\boldsymbol{\mathsf{y}}}_{(1)}, \nabla F \cdot {\boldsymbol{\mathsf{x}}}^{(1)}_{[=:{\boldsymbol{\mathsf{y}}}^{(1)}]} >_{\mathrm{R}^{\mathsf{m}}}$$

Note invariant at each point in the program execution \rightarrow validation of derivatives.

26 / 202

- 1. $v^{(i)}$ denotes a directional derivative of v resulting from the *i*-th application of AD (this application in tangent mode) to the code containing v
- 2. $v_{(i)}$ denotes an adjoint (derivative) of v resulting from the *i*-th application of AD (this application in adjoint mode) to the code containing v
- 3. $v^{(1,...,k)}$ denotes a k-th directional derivative of v

4.
$$v^{(k_1,...,k_i)(p)} \equiv v^{(k_1,...,k_i,p)}$$

5. $v_{(l_1,...,l_j)}^{(k_1,...,k_i)}$, j > 0, denotes a (i + j)-th adjoint derivative of v

6.
$$v_{(l_1,...,l_j)(p)}^{(k_1,...,k_i)} \equiv v_{(l_1,...,l_j,p)}^{(k_1,...,k_i)}$$

28 / 202

Let $\mathbf{y} = F(\mathbf{x}) : D_F \subseteq \mathbb{R}^n \to I_F \subseteq \mathbb{R}^m$ be defined over D_F and let

$$\mathbf{y} = F(\mathbf{x}) = G(H(\mathbf{x}), \mathbf{x}) = G(\mathbf{v}, \mathbf{x})$$

be such that both G and H are continuously differentiable over their respective domains $D_G = I_H \times D_F$ and $D_H \subseteq D_F$. Then F is continuously differentiable over D_F and

$$\frac{dF}{d\mathbf{x}}(\mathbf{x}^*) = \frac{\partial G}{\partial \mathbf{v}}(\mathbf{v}^*) \cdot \frac{dH}{d\mathbf{x}}(\mathbf{x}^*) + \frac{\partial G}{\partial \mathbf{x}}(\mathbf{x}^*)$$

for all $\mathbf{x}^* \in D_F$ and $\mathbf{v}^* = H(\mathbf{x}^*)$.

The given implementation of F : ℝⁿ → ℝ^m : y = F(x), can be decomposed into a single assignment code (sac)

$$\begin{aligned} v_i &= x_i & i = 0, \dots, n-1 \\ v_j &= \varphi_j \left((v_k)_{k \prec j} \right) & j = n, \dots, n+q-1 \\ y_k &= v_{n+p+k} & k = 0, \dots, m-1 \end{aligned}$$

where q = p + m and $k \prec j$ denotes a direct dependence of v_j on v_k as an argument of φ_j .

2. All elemental functions φ_j possess continuous partial derivatives

$$\partial_{j,i} \equiv rac{\partial arphi_j}{\partial \mathbf{v}_i} (\mathbf{v}_k)_{k\prec j}$$

with respect to their arguments $(v_k)_{k \prec j}$ at all points of interest.

- 3. The sac induces a directed acyclic graph (DAG) (V, E) with integer vertices $V = \{0, ..., n + q\}$ and edges $V \times V \supseteq E = \{(i, j) : i \prec j\}$.
- A linearized DAG (IDAG) is obtained by attaching the ∂_{j,i} to the corresponding edges (i, j) in the DAG.

$$\nabla F(\mathbf{x}) \equiv \frac{d\mathbf{y}}{d\mathbf{x}} = \sum_{\text{path} \in \text{IDAG}} \prod_{(i,j) \in \text{path}} \partial_{j,i}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
30 / 202

31 / 202

Let y = F(x) be defined over $D_F = \mathbb{R} \setminus \{0\}$ as

$$y=\frac{\sin(x)}{x}.$$

Both $G \equiv /$ and $H \equiv \sin$ are continuously differentiable over their respective domains $D_G = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$ and $D_H = \mathbb{R}$. Hence F is continuously differentiable over its domain D_F and

$$\frac{dF}{dx}(x^*) = \frac{\partial G}{\partial v}(v^*) \cdot \frac{dH}{dx}(x^*) + \frac{\partial G}{\partial x}(x^*) = \frac{\cos(x)}{x} - \frac{\sin(x)}{x^2}$$

for all $x^* \in D_F$ and $v^* = \sin(x^*)$.

イロト イポト イヨト イヨト 二日

Consider

$$A_3 \cdot A_2 \cdot A_1 \cdot A_0 \in {\rm I\!R}^{k_1 imes k_0}$$

for $A_0 \equiv \nabla F_0 \in \mathbb{R}^{l \times k_0}$, $A_1 \equiv \nabla F_1 \in \mathbb{R}^{l \times l}$, $A_2 \equiv \nabla F_2 \in \mathbb{R}^{l \times l}$, and $A_3 \equiv \nabla F_3 \in \mathbb{R}^{k_1 \times l}$, and where $l < k_1 < k_0$.

Compare

$$OPS(A_3 \cdot (A_2 \cdot (A_1 \cdot A_0))) = k_0 \cdot l \cdot l + k_0 \cdot l \cdot l + k_0 \cdot l \cdot k_1 \quad (\text{forward})$$

VS.

$$OPS(((A_3 \cdot A_2) \cdot A_1) \cdot A_0) = k_1 \cdot l \cdot l + k_1 \cdot l \cdot l + k_0 \cdot l \cdot k_1 \quad (\text{reverse})$$

VS.

$$OPS((A_3 \cdot (A_2 \cdot A_1)) \cdot A_0) = I \cdot I \cdot I + k_0 \cdot I \cdot I + k_0 \cdot I \cdot k_1 \quad (mix)$$

Challenger: Algorithmic Differentiation Chain Rule \Rightarrow Chained Jacobian Matrix Products

Note: Matrix product by vertex elimination on DAG.

・ロン ・四 と ・ ヨ と ・ ヨ と

Live for given implementation of

$$\gamma = \left(\sum_{i=0}^{n-1} x_i^2\right)^2$$

- run and time tangent code for increasing n
- compare output with finite differences
- run and time adjoint code for increasing n
- compare output with tangent

37 / 202

$$y = f(x) = f_3(f_2(f_1(x))) = \left(\sum_{i=0}^{n-1} x_i^2\right)^2$$

where

$$\begin{split} & \mathbb{R}^n \ni x = f_1(x) : x_i = x_i^2 \\ & \mathbb{R}^1 \ni y = f_2(x) = \sum_{i=0}^{n-1} x_i \\ & \mathbb{R}^1 \ni y = f_3(y) = y^2 \end{split}$$

yielding the IDAG on the right.

The f_i are continuously differentiable wrt. their arguments. Hence, by the chain rule

$$\nabla f(x) = \nabla f_3(y) \nabla f_2(x) \nabla f_1(x) = 2y \cdot (1 \dots 1) \cdot \begin{pmatrix} 2x_0 \\ \vdots \\ 2x_{n-1} \end{pmatrix} = \begin{pmatrix} 4yx_0 \\ \vdots \\ 4yx_{n-1} \end{pmatrix}$$

Note overwriting! (\rightarrow "Maths \neq CS")

A first-order central finite difference quotient

$$\frac{f(x+\frac{h}{2}\cdot x^{(1)})-f(x-\frac{h}{2}\cdot x^{(1)})}{h}$$

yields a second-order accurate⁴ approximation of the first directional derivative

$$y^{(1)} = \nabla f(x) \cdot x^{(1)} = \nabla f_3(f_2(f_1(x))) \cdot \nabla f_2(f_1(x)) \cdot \nabla f_1(x) \cdot x^{(1)}$$

= $2 \sum_{i=0}^{n-1} x_i^2 \cdot (1 \quad \dots \quad 1) \cdot \begin{pmatrix} 2x_0 \\ \vdots \\ 2x_{n-1} \end{pmatrix} \cdot \begin{pmatrix} x_0^{(1)} \\ \vdots \\ x_{n-1}^{(1)} \end{pmatrix}.$

The whole gradient $\nabla f(x)$ can be approximated by letting $x^{(1)}$ range over the Cartesian basis vectors in \mathbb{R}^n at a computational cost of $O(n) \cdot \operatorname{Cost}(f)$.

⁴cubic remainder term in Taylor expansion of nominator

Can we avoid truncation?

YES, WE CAN!

 \rightarrow For $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, implement the tangent model $y^{(1)} = \nabla F \cdot x^{(1)}$. At most *n* runs of the tangent code are required to obtain the whole Jacobian with machine accuracy.

A first-order tangent code computes the directional derivative

$$\begin{aligned} y^{(1)} &= \nabla f(x) \cdot x^{(1)} \\ &= \nabla f_3(f_2(f_1(x))) \cdot \nabla f_2(f_1(x)) \cdot \nabla f_1(x) \cdot x^{(1)} \\ &= 2 \sum_{i=0}^{n-1} x_i^2 \cdot (1 \quad \dots \quad 1) \cdot \begin{pmatrix} 2x_0 \\ \vdots \\ 2x_{n-1} \end{pmatrix} \cdot \begin{pmatrix} x_0^{(1)} \\ \vdots \\ x_{n-1}^{(1)} \end{pmatrix} \\ &= 2 \sum_{i=0}^{n-1} x_i^2 \cdot (1 \quad \dots \quad 1) \cdot \begin{pmatrix} 2x_0 x_0^{(1)} \\ \vdots \\ 2x_{n-1} x_{n-1}^{(1)} \end{pmatrix} \\ &= 2 \sum_{i=0}^{n-1} x_i^2 \cdot 2 \sum_{i=0}^{n-1} x_i x_i^{(1)} = 4 \sum_{i=0}^{n-1} x_i^2 \cdot \sum_{i=0}^{n-1} x_i x_i^{(1)} \end{aligned}$$

with machine accuracy.

To compute the whole gradient with machine accuracy an implementation of

$$y^{(1)} = 4 \sum_{i=0}^{n-1} x_i^2 \cdot \sum_{i=0}^{n-1} x_i x_i^{(1)}$$

such as

needs to be called *n* times with x_{t1s} ranging over the Cartesian basis vectors in \mathbb{R}^{n} .

Note: Solution tailored toward the given problem.

Wanted: Generic approach to tangent code generation!

Can we reduce the computational cost?

YES, WE CAN!

 \rightarrow For $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, implement the adjoint model $x_{(1)} = \nabla F^T \cdot y_{(1)}$. At most *m* runs of the adjoint code are required to obtain the whole Jacobian with machine accuracy. Hence, less (matrix-free) matrix vector products are required if $n > \mathcal{R} \cdot m$.⁵

 ${}^{5}\mathcal{R}$ denotes the constant computational overhead induced by the *reversal of the data flow* in adjoint mode. ${}^{<}\Box \vdash {}^{<}\Box \vdash {}^{<}\Xi \vdash {}^{<}\Xi \vdash {}^{<}\Xi \vdash {}^{<}\Xi$

43 / 202

A first-order adjoint code computes the transposed Jacobian vector product

$$\begin{aligned} x_{(1)} &= \nabla f(x)^{T} \cdot y_{(1)} \\ &= \nabla f_{1}(x)^{T} \cdot \nabla f_{2}(f_{1}(x))^{T} \cdot \nabla f_{3}(f_{2}(f_{1}(x)))^{T} \cdot y_{(1)} \\ &= \begin{pmatrix} 2x_{0} \\ \vdots \\ 2x_{n-1} \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \cdot 2\sum_{i=0}^{n-1} x_{i}^{2} \cdot y_{(1)} \\ &= \begin{pmatrix} 4x_{0}y_{(1)} \sum_{i=0}^{n-1} x_{i}^{2} \\ \vdots \\ 4x_{n-1}y_{(1)} \sum_{i=0}^{n-1} x_{i}^{2} \end{pmatrix} \end{aligned}$$

with machine accuracy.

nag

45 / 202

イロン イロン イヨン イヨン 三日

To compute the whole gradient with machine accuracy an implementation of

$$\mathbf{x}_{(1)} = \begin{pmatrix} 4x_0y_{(1)}\sum_{i=0}^{n-1}x_i^2\\ \vdots\\ 4x_{n-1}y_{(1)}\sum_{i=0}^{n-1}x_i^2 \end{pmatrix}$$

such as

needs to called once with $y_a1s=1$.

Again: Solution tailored toward the given problem.

Wanted: Generic approach to adjoint code generation!

... as Chained (Jacobian) Matrix Product

$$\nabla f(\mathbf{x}) = \mathbf{I}_{m} \cdot \nabla f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{I}_{n} = \mathbf{I}_{m} \cdot \nabla f(\mathbf{x}) \cdot \mathbf{I}_{n}$$

$$= \mathbf{I}_{m} \cdot \nabla f_{3}(f_{2}(f_{1}(\mathbf{x}))) \cdot \nabla f_{2}(f_{1}(\mathbf{x})) \cdot \nabla f_{1}(\mathbf{x}) \cdot \mathbf{I}_{n}$$

$$= (\mathbf{1}) \cdot (2\sum_{i=0}^{n-1} x_{i}^{2}) \cdot (1 \quad \dots \quad \mathbf{1}) \cdot \begin{pmatrix} 2x_{0} \\ \vdots \\ 2x_{n-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{1} \\ \vdots \\ \mathbf{1} \end{pmatrix}$$

$$= \left[\left[(\mathbf{1}) \cdot (2\sum_{i=0}^{n-1} x_{i}^{2}) \right] \cdot (1 \quad \dots \quad \mathbf{1}) \right] \cdot \begin{pmatrix} 2x_{0} \\ \vdots \\ 2x_{n-1} \end{pmatrix}$$

$$= (2\sum_{i=0}^{n-1} x_{i}^{2}) \cdot \left[(1 \quad \dots \quad \mathbf{1}) \cdot \left[\begin{pmatrix} 2x_{0} \\ \vdots \\ 2x_{n-1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{1} \\ \vdots \\ 1 \end{pmatrix} \right] \right]$$

Note:

- matrix-free local Jacobian chain
- exploitation of sparsity comes at a cost

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivational Example

.. as Chained (Jacobian) Matrix Product (Graphically)

$$\frac{\partial t}{\partial s} = \frac{\partial t}{\partial x} = \frac{\partial y}{\partial s} = \frac{\partial y}{\partial x}$$

Note:

- wanted: $\frac{\partial y}{\partial x}$ (matrix-free Jacobian chain)
- $\frac{\partial y}{\partial s}$ by tangent code
- $\frac{\partial t}{\partial x}$ by adjoint code

For the previously considered implementation of the product reduction

$$\mathbb{R} \ni y = \prod_{i=0}^{n-1} x_i$$

we obtain for n = 4

 $y = f(x) = f_4(f_3(f_2(f_1(x_0), x_1), x_2), x_3),$ where $f_1 = I$ and $f_i = f_{i-1} \cdot x_i$ for i = 2, 3, 4.

By the chain rule,

$$\begin{aligned} y^{(1)} &= \nabla f \cdot x^{(1)} = \begin{pmatrix} x_3 & x_0 \cdot x_1 \cdot x_2 \end{pmatrix} \cdot \begin{pmatrix} (x_2 & x_0 \cdot x_1) \cdot \begin{pmatrix} (x_1 & x_0) \cdot \begin{pmatrix} (1 \cdot x_0^{(1)}) \\ x_1^{(1)} \end{pmatrix} \\ & x_2^{(1)} \end{pmatrix} \\ &= \begin{pmatrix} x_3 & x_0 \cdot x_1 \cdot x_2 \end{pmatrix} \cdot \begin{pmatrix} (x_2 & x_0 \cdot x_1) \cdot \begin{pmatrix} x_1 \cdot x_0^{(1)} + x_0 \cdot x_1^{(1)} \\ x_2^{(1)} \end{pmatrix} \\ & & x_3^{(1)} \end{pmatrix} \\ &= \begin{pmatrix} x_3 & x_0 \cdot x_1 \cdot x_2 \end{pmatrix} \cdot \begin{pmatrix} x_2 \cdot (x_1 \cdot x_0^{(1)} + x_0 \cdot x_1^{(1)} + x_0 \cdot x_1 \cdot x_2^{(1)} \\ x_3^{(1)} \end{pmatrix} \\ &= x_3 \cdot (x_2 \cdot (x_1 \cdot x_0^{(1)} + x_0 \cdot x_1^{(1)}) + x_0 \cdot x_1 \cdot x_2 \cdot x_3^{(1)} \end{pmatrix} \end{aligned}$$

< □ > < 部 > < 書 > < 書 > 書 の Q (~ 49/202

By the chain rule,

$$\begin{aligned} x_{(1)} &= \nabla f^{T} \cdot y_{(1)} = \left(\begin{pmatrix} \begin{pmatrix} (1) \cdot x_{1} \\ x_{0} \end{pmatrix} \cdot x_{2} \\ x_{0} \cdot x_{1} \\ x_{0} \cdot x_{1} \cdot x_{2} \end{pmatrix} \cdot y_{(1)} = \begin{pmatrix} \begin{pmatrix} \begin{pmatrix} (x_{1} \\ x_{0} \end{pmatrix} \cdot x_{2} \\ x_{0} \cdot x_{1} \end{pmatrix} \\ x_{0} \cdot x_{1} \cdot x_{2} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{2} \cdot y_{(1)} \end{pmatrix} \right) \\ &= \begin{pmatrix} \begin{pmatrix} \begin{pmatrix} (x_{1} \\ x_{0} \end{pmatrix} \cdot x_{2} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{2} \cdot y_{(1)} \end{pmatrix} \\ &= \begin{pmatrix} x_{1} \cdot x_{2} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{2} \cdot y_{(1)} \end{pmatrix} \\ &= \begin{pmatrix} x_{1} \cdot x_{2} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{3} \cdot y_{(1)} \\ x_{0} \cdot x_{1} \cdot x_{2} \cdot y_{(1)} \end{pmatrix} \end{aligned}$$

 \dots built under Linux with g++ –03 \dots and run on an Intel CORE i7 with 4gb RAM; run time in seconds \dots

n	cfd	tangent	adjoint (recompute)	adjoint (store)	primal
10 ⁴	7	6	< 1	< 1	< 1
$2 \cdot 10^4$	27	26	1.5	< 1	< 1
$3 \cdot 10^4$	60	58	3.5	< 1	< 1
$4 \cdot 10^4$	106	103	6	< 1	< 1
:					
10 ⁷	$\rightarrow \infty$	$\rightarrow \infty$:-(1	1
10 ⁸	$\rightarrow \infty$	$\rightarrow \infty$:-(10	9
$2 \cdot 10^8$	$\rightarrow \infty$	$\rightarrow \infty$:-(∞	18

 $\mathcal{R} \in (1,\infty] \dots$

52 / 202

(日) (四) (三) (三) (三)

Use central finite differences for the approximation of the gradient of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```


Objective

◆□ → < 部 → < 注 → < 注 → 注 → ○ へ (~ 53 / 202

You will learn about

- $1. \ the principles of generating$
 - tangent
 - adjoint
 - second-(and higher-)order tangent
 - second-(and higher-)order adjoint

versions of numerical simulation code by overloading using the dco/c++ (derivative code by overloading in C++) library

2. the use of such derivative code, for example, in numerical methods.

You will understand that

1. further (course) work is necessary in order ot obtain robust, efficient, and scalable derivative code.

First-Order Tangent and Adjoint Code by Overloading

A first-order tangent code $F^{(1)} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m$,

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y}^{(1)} \end{pmatrix} = F^{(1)}(\mathbf{x}, \mathbf{x}^{(1)}),$$

computes a Jacobian vector product (a directional derivative) alongside with the function value as follows:

 $\mathbf{y} := F(\mathbf{x})$ $\mathbf{y}^{(1)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$

56 / 202

57 / 202

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Define

$$\mathbf{v}^{(1)} \equiv rac{d\mathbf{v}}{ds}$$

for $\mathbf{v} \in {\mathbf{x}, \mathbf{y}}$ and some auxiliary $s \in \mathbb{R}$ assuming that $F(\mathbf{x}(s))$ is continuously differentiable over \mathbb{R} .

By the chain rule of differential calculus

$$\frac{d\mathbf{y}}{ds} = \frac{d\mathbf{y}}{d\mathbf{x}} \cdot \frac{d\mathbf{x}}{ds} = \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

and hence

$$\mathbf{y}^{(1)} = \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}.$$

CE First-Order Tangent Code Graphically

- Vertices sorted (indexed) topologically wrt. data dependence.
- Edges sorted topologically wrt. index of target with index of source as tie-breaker.
- ▶ Note inner product notation $\langle \nabla F(\mathbf{x}), \mathbf{x}^{(1)} \rangle \equiv \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$; see also [2].

nag

Let

$$\mathbf{y}=F(\mathbf{x})=G(H(\mathbf{x}),\mathbf{x})$$

with $F : \mathbb{R}^n \to \mathbb{R}^m$, $H : \mathbb{R}^n \to \mathbb{R}^k$, $\mathbf{z} = H(\mathbf{x})$, and $G : \mathbb{R}^{n+k} \to \mathbb{R}^m$ continuously differentiable over their respective domains. By the chain rule

$$\mathbf{y}^{(1)} = \frac{dF}{ds} = \frac{dF}{d\mathbf{x}} \cdot \mathbf{x}^{(1)} = \left(\frac{\partial G}{\partial \mathbf{z}} \cdot \frac{dH}{d\mathbf{x}} + \frac{\partial G}{\partial \mathbf{x}}\right) \cdot \mathbf{x}^{(1)}$$
$$= \frac{\partial G}{\partial \mathbf{z}} \cdot \left(\frac{dH}{d\mathbf{x}} \cdot \mathbf{x}^{(1)}\right) + \frac{\partial G}{\partial \mathbf{x}} \cdot \mathbf{x}^{(1)}$$
$$= \frac{\partial G}{\partial \mathbf{z}} \cdot \mathbf{z}^{(1)} + \frac{\partial G}{\partial \mathbf{x}} \cdot \mathbf{x}^{(1)}$$
$$= \frac{\partial G}{\partial \mathbf{z}} \cdot \mathbf{z}^{(1)} + \partial \mathbf{y}^{(1)}$$

Graphically, this sequence of operations can be represented by a sequence of *edge back eliminations* on the corresponding tangent-augmented IDAG as follows:

First-Order Tangent Code

Chain Rule and Edge Back Elimination

An edge is back eliminated by multiplying its label with the label(s) of the incoming edge(s) of its source followed by its removal. If the source has no further emanating edges, then it is also removed.

First-order tangent code back eliminates all back eliminatable edges in topological order (no storage of IDAG).

Bottom-up: Tangents of elemental functions + chain rule, e.g.

1. $y = \sin(x);$ $\frac{\partial y}{\partial s} = \frac{\partial y}{\partial x} \cdot \frac{\partial x}{\partial s} = \cos(x) \cdot x^{(1)}$

2. $y = x_0 \cdot x_1$;

$$y^{(1)} \equiv \frac{\partial y}{\partial s} = \frac{\partial y}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial s} = \begin{pmatrix} x_1 & x_0 \end{pmatrix} \cdot \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \end{pmatrix} = x_0^{(1)} \cdot x_1 + x_0 \cdot x_1^{(1)}$$

3. $y = sin(x_0 \cdot x_1)$; Let $v = x_0 \cdot x_1$. Then

$$y^{(1)} \equiv \frac{\partial y}{\partial s} = \frac{\partial y}{\partial v} \cdot \frac{\partial v}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial s}$$
$$= \cos(v) \cdot \begin{pmatrix} x_1 & x_0 \end{pmatrix} \cdot \begin{pmatrix} x_0^{(1)} \\ x_1^{(1)} \end{pmatrix} = \cos(v) \cdot \begin{pmatrix} x_0^{(1)} \cdot x_1 + x_0 \cdot x_1^{(1)} \end{pmatrix}$$


```
void f(double &z) {
   z=exp(z);
   z=sin(z);
}
```


void $t1_f(t1s::type \&[z,t1_z])$ {

}

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 64/202


```
void t1_f(t1s::type &[z,t1_z]) {
    [z,t1_z]=[exp(z),exp(z)*t1_z];
    [z,t1_z]=[sin(z),cos(z)*t1_z];
}
```

```
Driver:
```

```
....
tls::type [z,t1_z]=[...,1];
t1_f([z,t1_z]);
cout << t1_z << endl;
....</pre>
```


68 / 202

For scalar tangent mode AD, a class $d_{co_{-t1s_{-type}}}$ (dco's tangent 1st-order scalar type) is defined with double precision members v (value) and t (tangent).

```
class dco_tls_type {
  public :
    double v;
    double t;
    dco_tls_type(const double&);
    dco_tls_type();
    dco_tls_type& operator=(const dco_tls_type&);
};
```



```
dco_tls_type&
dco_tls_type::operator=(const dco_tls_type& x) {
    if (this=&x) return *this;
    v=x.v; t=x.t;
    return *this;
}
```



```
#include "dco_tls_type.hpp"
const int n=4;
void f(dco_tls_type *x, dco_tls_type &y) { ... }
int main() {
    dco_tls_type x[n], y;
    for (int i=0;i<n; i++) x[i]=1
    for (int i=0;i<n; i++) { x[i]=1
    for (int i=0;i<n; i++) { x[i].t=1;
        f(x,y); x[i].t=0;
        cout << y.t << endl;
    }
    return 0;
}</pre>
```



```
1 #include <iostream >
2 using namespace std;
3
  #include "dco.hpp"
4
  using namespace dco;
6
7 typedef gt1s<double> AD_MODE;
  typedef AD_MODE::type AD_TYPE:
Q
  template<typename T>
10
  void f(int n, const T *x, T& y) { y=x[0]/x[1]; }
11
  void driver(int n, const double* xv, double& yv, double* g) {
13
    AD_TYPE *x=new AD_TYPE[n], y;
14
    for (int i=0; i < n; i++)
15
      for (int j=0; j < n; j++) x[j]=xv[j];
16
      derivative (x[i]) =1;
17
      f(n,x,y);
18
      g[i]=derivative(y);
19
20
    yv=value(y);
21
    delete [] x;
22
23
24
  int main() {
25
    const int n=2;
26
```

72 / 202


```
27  double x[n]={2.71,3.14}, y, g[n];
28  driver(n,x,y,g);
29  cout << "y=" << y << endl;
30  cout << "g=[" << endl;
31  for (int i=0;i<n;i++) cout << g[i] << endl;
32  cout << "]" << endl;
33  return 0;
34 }
```

^/gt1s/gt1s_simple.cpp

Live:

implementation of driver fg for given instantiation of

```
template<typename T>
void f(const int n, T *x, T& y) {
...
}
```

with dco::t1s<double>::type

build and run

< □ > < 部 > < E > < E > E の Q (~ 74/202


```
void fg(const double x[n], double& y, double g[n]) {
   T1S_TYPE t1s_x[n], t1s_y;
   for (int i=0;i<n;i++) t1s_x[i]=x[i];
   for (int i=0;i<n;i++) {
      dco::set_derivative(t1s_x[i],1);
      f(t1s_x,t1s_y);
      g[i]=dco::get_derivative(t1s_y);
      dco::set_derivative(t1s_x[i],0);
   }
   y=dco::get_value(t1s_y);
}</pre>
```


A first-order vector tangent code $\mathcal{F}^{(1)}: \mathbb{R}^n \times \mathbb{R}^{n \times l} \to \mathbb{R}^m \times \mathbb{R}^{m \times l}$,

$$\begin{pmatrix} \mathbf{y} \\ Y^{(1)} \end{pmatrix} = F^{(1)}(\mathbf{x}, X^{(1)}),$$

computes a Jacobian matrix product (a collection of directional derivative) alongside with the function value as follows:

$$\mathbf{y} := F(\mathbf{x})$$
$$Y^{(1)} := \nabla F(\mathbf{x}) \cdot X^{(1)}$$

... accumulation of the whole Jacobian by *seeding* input directions $X^{(1)}[i] \in \mathbb{R}^n$, i = 0, ..., n-1, with the Cartesian basis vectors in \mathbb{R}^n . Note concurrency!

Use dco/c++ to generate a first-order tangent version of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the gradient.

- 2. Heat Conduction
- 3. Option Pricing

A first-order adjoint code $F_{(1)}$: $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^n$,

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{x}_{(1)} \\ \mathbf{y}_{(1)} \end{pmatrix} := F_{(1)}(\mathbf{x}, \mathbf{x}_{(1)}, \mathbf{y}_{(1)}),$$

computes a shifted transposed Jacobian vector product (an adjoint directional derivative) alongside with the function value as follows:

$$\begin{aligned} \mathbf{y} &:= F(\mathbf{x}) \\ \mathbf{x}_{(1)} &:= \mathbf{x}_{(1)} + \nabla F(\mathbf{x})^T \cdot \mathbf{y}_{(1)} \\ \mathbf{y}_{(1)} &:= 0 \end{aligned}$$

79 / 202

◆□→ ◆□→ ◆注→ ◆注→ □注□

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Define

$$\mathbf{v}_{(1)} \equiv \frac{dt}{d\mathbf{v}}^T$$

for $\mathbf{v} \in {\mathbf{x}, \mathbf{y}}$ and some auxiliary $t \in \mathbb{R}$ assuming that $t(F(\mathbf{x}))$ is continuously differentiable over D_F .

By the chain rule of differential calculus

$$\frac{dt}{d\mathbf{x}} = \frac{dt}{d\mathbf{y}} \cdot \frac{dF}{d\mathbf{x}} = \mathbf{y}_{(1)}^T \cdot \nabla F(\mathbf{x})$$

and hence

$$\mathbf{x}_{(1)} = \nabla F(\mathbf{x})^T \cdot \mathbf{y}_{(1)}.$$

Let

$$\mathbf{y} = F(\mathbf{x}) = \begin{pmatrix} F_0(\mathbf{x}) \\ F_1(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} \mathbf{y}_0(\mathbf{x}) \\ \mathbf{y}_1(\mathbf{x}) \end{pmatrix}$$

Clearly,

$$\nabla F(\mathbf{x})^T \cdot \mathbf{y}_{(1)} = \begin{pmatrix} \nabla F_0(\mathbf{x})^T & \nabla F_1(\mathbf{x})^T \end{pmatrix} \cdot \begin{pmatrix} \mathbf{y}_{0(1)}(\mathbf{x}) \\ \mathbf{y}_{1(1)}(\mathbf{x}) \end{pmatrix}$$
$$= \nabla F_0(\mathbf{x})^T \cdot \mathbf{y}_{0(1)}(\mathbf{x}) + \nabla F_1(\mathbf{x})^T \cdot \mathbf{y}_{1(1)}(\mathbf{x})$$

Local (out of context) generation of adjoints of F_i requires incrementation of adjoint inputs due to possible use of inputs by other functions.

Let **y** be used as an input to a function evaluation which preceeds *F*. Its adjoint should be equal to zero prior to getting incremented. At the same time the memory location addressed by $\mathbf{y}_{(1)}$ potentially holds a nonzero adjoint prior to the evaulation of $F_{(1)}$. Correct incrementation can be achieved by resetting the adjoints of the results of a function equal to zero after the evaluation of the adjoint version of this function. For example,

$$\mathbf{v} := G(\mathbf{y})$$

 $\mathbf{y} := F(\mathbf{v})$

$$\mathbf{v}_{(1)} := \mathbf{v}_{(1)} + \frac{\partial F}{\partial \mathbf{v}}^{T} \cdot \mathbf{y}_{(1)}$$
$$\mathbf{y}_{(1)} := \mathbf{0}$$
$$\mathbf{y}_{(1)} := \mathbf{y}_{(1)} + \frac{\partial G}{\partial \mathbf{x}}^{T} \cdot \mathbf{v}_{(1)}$$

To miss the reset of $\mathbf{y}_{(1)}$ means to increment an incorrect initial adjoint of the input \mathbf{y} to F.

First-Order Adjoint Code

Graphically

STO

Note inner product notation $\langle \mathbf{y}_{(1)}, \nabla F(\mathbf{x}) \rangle \equiv \nabla F(\mathbf{x})^T \cdot \mathbf{y}_{(1)}$; see also [2].

Let

$$\mathbf{y}=F(\mathbf{x})=G(H(\mathbf{x}),\mathbf{x})$$

with $F : \mathbb{R}^n \to \mathbb{R}^m$, $H : \mathbb{R}^n \to \mathbb{R}^k$, z = H(x), and $G : \mathbb{R}^{n+k} \to \mathbb{R}^m$ continuously differentiable over their respective domains. By the chain rule

$$\mathbf{x}_{(1)} \equiv \frac{dt}{d\mathbf{x}}^{T} = \frac{dF}{d\mathbf{x}}^{T} \cdot \mathbf{y}_{(1)} = \left(\frac{dH}{d\mathbf{x}}^{T} \cdot \frac{\partial G}{\partial \mathbf{z}}^{T} + \frac{\partial G}{\partial \mathbf{x}}^{T}\right) \cdot \mathbf{y}_{(1)}$$
$$= \frac{dH}{d\mathbf{x}}^{T} \cdot \left(\frac{\partial G}{\partial \mathbf{z}}^{T} \cdot \mathbf{y}_{(1)}\right) + \frac{\partial G}{\partial \mathbf{x}}^{T} \cdot \mathbf{y}_{(1)}$$
$$= \frac{dH}{d\mathbf{x}}^{T} \cdot \left(\frac{\partial G}{\partial \mathbf{z}}^{T} \cdot \mathbf{y}_{(1)}\right) + \partial \mathbf{x}_{(1)}$$
$$= \frac{dH}{d\mathbf{x}}^{T} \cdot \mathbf{z}_{(1)} + \partial \mathbf{x}_{(1)}$$

84 / 202

First-Order Adjoint Code

Chain Rule and Vertex Elimination

1: x

1: x

х

A vertex is eliminated by multiplying the labels of its incoming edges with the label(s) of the edge(s) emanating from its target (resulting in new edges or incrementation of existing edge labels) followed by its removal.

First-order adjoint code eliminates all eliminatable vertices in reverse topological order (storage of IDAG).

85 / 202

Bottom-up: Adjoints of elemental functions + chain rule, e.g.

$$y := \sin(x);$$

$$x_{(1)} \equiv \frac{\partial t}{\partial x} := x_{(1)} + \frac{\partial t}{\partial y} \cdot \frac{\partial y}{\partial x} = x_{(1)} + y_{(1)} \cdot \cos(x)$$

$$y := x_0 \cdot x_1;$$

$$\mathbf{x}_{(1)} = \begin{pmatrix} x_{0(1)} \\ x_{1(1)} \end{pmatrix} \equiv \begin{pmatrix} \frac{\partial t}{\partial x_0} \\ \frac{\partial t}{\partial x_1} \end{pmatrix} := \mathbf{x}_{(1)} + \begin{pmatrix} \frac{\partial t}{\partial y} \cdot \begin{pmatrix} \frac{\partial y}{\partial x_0} & \frac{\partial y}{\partial x_1} \end{pmatrix} \end{pmatrix}^T$$

$$= \mathbf{x}_{(1)} + \begin{pmatrix} x_1 \\ x_0 \end{pmatrix} \cdot y_{(1)} = \mathbf{x}_{(1)} + \begin{pmatrix} x_1 \cdot y_{(1)} \\ x_0 \cdot y_{(1)} \end{pmatrix}$$

Note accumulation gradient with $1 \times 2 \text{ fmas}^6$ as opposed to $2 \times 2 \text{ fmas}$ when using tangent code $y^{(1)} = x_0^{(1)} \cdot x_1 + x_0 \cdot x_1^{(1)}$.

►

⁶fused multiply-add – the flop of the chain rule

►
$$y := \sin(x_0 \cdot x_1)$$
; Let $v := x_0 \cdot x_1$. Then

$$\mathbf{x}_{(1)} \equiv \begin{pmatrix} \frac{\partial t}{\partial x_0} \\ \frac{\partial t}{\partial x_1} \end{pmatrix} := \mathbf{x}_{(1)} + \left(\begin{pmatrix} \frac{\partial t}{\partial y} \cdot \frac{\partial y}{\partial v} \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial v}{\partial x_0} & \frac{\partial v}{\partial x_1} \end{pmatrix} \right)^T$$

$$= \mathbf{x}_{(1)} + (y_{(1)} \cdot \cos(v)) \cdot \begin{pmatrix} x_1 \\ x_0 \end{pmatrix}$$

Note reverse order of adjoint operations \Rightarrow *data flow reversal*.

Compare accumulation of gradient using tangent

$$y^{(1)} := \cos(v) \cdot \left(x_0^{(1)} \cdot x_1 + x_0 \cdot x_1^{(1)}\right)$$

(requires 2×3 muls) and adjoint

$$\mathbf{x}_{(1)} := (y_{(1)} \cdot \cos(v)) \cdot \begin{pmatrix} x_1 \\ x_0 \end{pmatrix}$$

(requires 1×3 muls).


```
void a1_f(a1s::type &[z,&TAPE]) {
    ...
}
    ...
```

Taping is triggered by presence of entries representing the independent variables (also: sources in DAG; \rightarrow registration).


```
void a1_f(a1s::type &[z,&TAPE]) {
    [z,&TAPE]=exp([z,&TAPE]);
    [z,&TAPE]=sin([z,&TAPE]);
}
...
a1_z=1;
TAPE.interpret(a1_z);
...
```



```
void a1_f(a1s::type &[z,&TAPE]) {
    [z,&TAPE]=exp([z,&TAPE]);
    [z,&TAPE]=sin([z,&TAPE]);
}
...
a1_z=1;
TAPE.interpret(a1_z);
...
```



```
void a1_f(a1s::type &[z,&TAPE]) {
    [z,&TAPE]=exp([z,&TAPE]);
    [z,&TAPE]=sin([z,&TAPE]);
}
...
a1_z=1;
TAPE.interpret(a1_z);
...
```



```
void a1_f(a1s::type &[z,&TAPE]) {
    [z,&TAPE]=exp([z,&TAPE]);
    [z,&TAPE]=sin([z,&TAPE]);
}
...
a1_z=1;
TAPE.interpret(a1_z);
...
```



```
void a1_f(a1s::type &[z,&TAPE]) {
    [z,&TAPE]=exp([z,&TAPE]);
    [z,&TAPE]=sin([z,&TAPE]);
}
...
a1_z=1;
TAPE.interpret(a1_z);
cout << a1_z << endl;
...</pre>
```


97 / 202

The favored approach to a run-time version of the adjoint model is to build a *tape* (an augmented representation of the DAG) by overloading, followed by an interpretative reverse propagation of adjoints through the tape. In our case the tape is a statically allocated array of tape entries addressed by their position in the array.

```
class dco_als_tape_entry {
    public:
        int oc, arg1, arg2;
        double v,a;
        dco_als_tape_entry() :
            oc(DCO_AIS_UNDEF), arg1(DCO_AIS_UNDEF),
            arg2(DCO_AIS_UNDEF), v(0), a(0)
        {};
};
```


As in forward mode, an augmented data type is defined to replace the type of every active floating-point variable. The corresponding class dco_als_type (dco's adjoint 1st-order scalar type) contains the virtual address va (position in tape) of the current variable in addition to its value v.

```
class dco_als_type {
   public:
     int va;
     double v;
     dco_als_type() : va(DCO_A1S_UNDEF), v(0) {};
     dco_als_type(const double&);
     dco_als_type& operator=(const dco_als_type&);
};
```



```
dco_als_type&
dco_als_type::operator=(const dco_als_type& x) {
  if (this=&x) return *this;
  dco_als_tape[dco_als_vac].oc=DCO_AlS_ASG;
  dco_als_tape[dco_als_vac].v=v=x.v;
  dco_als_tape[dco_als_vac].argl=x.va;
  va=dco_als_vac++;
  return *this;
}
```



```
dco_als_type sin(const dco_als_type& x) {
    dco_als_type tmp;
    dco_als_tape[dco_als_vac].oc=DCO_AlS_SIN;
    dco_als_tape[dco_als_vac].argl=x.va;
    dco_als_tape[dco_als_vac].v=tmp.v=sin(x.v);
    tmp.va=dco_als_vac++;
    return tmp;
}
```



```
#include <iostream>
#include "dco_als_type.hpp"
using namespace std;
const int n=4;
extern dco_als_tape_entry
    dco_als_tape[DCO_AIS_TAPE_SIZE];
void f(dco_als_type *x, dco_als_type &y) {
    y=0;
    for (int i=0;i<n;i++) y=y+x[i]*x[i];
    y=y*y;
}...</pre>
```


nag

105 / 202

<ロ> (四) (四) (注) (日) (三)


```
1 #include <iostream >
2 using namespace std;
3
  #include "dco.hpp"
4
 using namespace dco;
7 typedef ga1s<double> AD_MODE;
8 typedef AD_MODE::type AD_TYPE;
  typedef AD_MODE::tape_t AD_TAPE_TYPE:
  AD_TAPE_TYPE*& AD_TAPE_POINTER=AD_MODE::global_tape;
10
11
  template<typename T>
12
  void f(int n, const T *x, T&y) { y=x[0]/x[1]; }
13
14
  void driver(int n, const double* xv, double& yv, double* g) {
15
    AD_TYPE *x=new AD_TYPE[n], y;
16
    AD_TAPE_POINTER=AD_TAPE_TYPE :: create();
17
    for (int i=0; i<n; i++) {
18
      \times[i]=\timesv[i];
19
      AD_TAPE_POINTER \rightarrow register_variable(x[i]);
20
21
    f(n,x,y);
22
    AD_TAPE_POINTER \rightarrow register_output_variable(y);
    vv=value(v);
24
    derivative (y) = 1;
25
    AD_TAPE_POINTER->interpret_adjoint();
26
```


First-Order Adjoint Code

Toy Problem with dco/c++ (cont.)

```
for (int j=0; j < n; j++) g[j]=derivative(x[j]);
27
28
     AD_TAPE_TYPE :: remove (AD_TAPE_POINTER);
     delete [] x;
29
  }
30
31
  int main() {
32
     const int n=2;
33
     double \times [n] = {2.71, 3.14}, y, g[n];
34
     driver(n,x,y,g);
35
     cout \ll v = v \ll endl:
36
     cout \ll "g=[" \ll endl;
37
     for (int i=0; i < n; i++) cout << g[i] << endl;
38
     cout << "]" << endl;
39
     return 0:
40
41 }
```

~/ga1s/ga1s_simple.cpp

<ロ> (四) (四) (注) (日) (三)

Live:

implementation of driver fg for given instantiation of

with dco::ga1s<double>::type.

build and run


```
void fg(const double x[n], double& y, double g[n]) {
   A15_TAPE_POINTER=AIS_MODE::tape::create();
   A15_TYPE als_x[n], als_y;
   for (int i=0;i<n;i++) {
      als_x[i]=x[i];
      AIS_TAPE_POINTER->register_variable(als_x[i]);
    }
   f(als_x,als_y);
   A15_TAPE_POINTER->register_output_variable(als_y);
   v=dco::get_value(als_y);
   dco::set_derivative(als_y,1);
   A15_TAPE_POINTER->interpret_adjoint();
   for (int i=0;i<n;i++)
    g[i]=dco::get_derivative(als_x[i]);
}</pre>
```


A first-order vector adjoint code $F_{(1)}$: $\mathbb{R}^n \times \mathbb{R}^{n \times l} \times \mathbb{R}^{m \times l} \to \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R}^{m \times l}$,

$$egin{pmatrix} {oldsymbol{y}} \\ {X_{(1)}} \\ {Y_{(1)}} \end{pmatrix} := F_{(1)}(\mathbf{x}, X_{(1)}, Y_{(1)}),$$

computes a shifted transposed Jacobian matrix product (an collection of adjoint directional derivatives) alongside with the function value as follows:

$$\begin{aligned} \mathbf{y} &:= F(\mathbf{x}) \\ X_{(1)} &:= X_{(1)} + \nabla F(\mathbf{x})^T \cdot Y_{(1)} \\ Y_{(1)} &:= 0 \end{aligned}$$

... accumulation of the whole Jacobian by seeding input directions $Y_{(1)}[i] \in \mathbb{R}^m, i = 0, ..., m-1$, with the Cartesian basis vectors in \mathbb{R}^m and for $X_{(1)} = 0$ on input. Note concurrency!

111 / 202

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Use dco/c++ to generate a first-order adjoint version of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the gradient.

- 2. Heat Conduction
- 3. Option Pricing

text book reversal (no tricks!) within available memory of 10GB (RAM); max. problem size at $n \approx 16K$ vs. $n \approx 32K$

- in-house 3D unsteady incompressible flow simulation code by J. Lotz
- scenario
 - unit cube
 - zero initial condition
 - fixed inflow (Dirichlet boundary for velocity) at the lower left
 - outflow (Dirichlet boundary for pressure) at the lower right
 - cyclic z-boundary conditions

flow field after 1.5s colored by x-velocity

- equations are Boussinesq-approximation coupling momentum, energy, and mass conservation
- rectangular domain with equidistant Arakawa-C staggered grid
- SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm; explicit Euler time stepping scheme; Piascek-Williams scheme for the spacial discretization of the advection term; central finite differences for spacial discretization of the diffusion term
- linear system solved by matrix-free SOR (successive over-relaxation)

Second-(and Higher-)Order Tangent and Adjoint Code by Overloading

◆□ → < 部 → < 差 → < 差 → 差 → ○ < (~ 115/202

116 / 202

<ロ> (四) (四) (三) (三) (三)

Without loss of generality, we consider multivariate scalar functions $y = F(\mathbf{x}) : D_F \subseteq \mathbb{R}^n \to I_F \subseteq \mathbb{R}$ in order to simplify the notation.

We assume F to be twice continuously differentiable over its domain D_F implying the existence of the Hessian

$$\nabla^2 F(\mathbf{x}) \equiv \frac{\partial^2 F}{\partial \mathbf{x}^2}(\mathbf{x}).$$

The Hessian is a three-tensor for multivariate vector functions complicating the notation slightly due to the need for tensor arithmetic; see [2].

A second-order central finite difference quotient

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}^0) \approx \left[f(\mathbf{x}^0 + (\mathbf{e}_j + \mathbf{e}_i) \cdot h) - f(\mathbf{x}^0 + (\mathbf{e}_j - \mathbf{e}_i) \cdot h) - f(\mathbf{x}^0 + (\mathbf{e}_i - \mathbf{e}_j) \cdot h) + f(\mathbf{x}^0 - (\mathbf{e}_j + \mathbf{e}_i) \cdot h) \right] / (4 \cdot h^2)$$
(1)

yields an approximation of the second directional derivative

$$y^{(1,2)} = \mathbf{x}^{(1)^T} \cdot \nabla^2 f(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$
 (w.l.o.g. $m = 1$)

as

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}^0) \approx \frac{\frac{\partial f}{\partial x_i}(\mathbf{x}^0 + \mathbf{e}_j \cdot h) - \frac{\partial f}{\partial x_i}(\mathbf{x}^0 - \mathbf{e}_j \cdot h)}{2 \cdot h}$$
$$= \left[\frac{f(\mathbf{x}^0 + \mathbf{e}_j \cdot h + \mathbf{e}_i \cdot h) - f(\mathbf{x}^0 + \mathbf{e}_j \cdot h - \mathbf{e}_i \cdot h)}{2 \cdot h} - \frac{f(\mathbf{x}^0 - \mathbf{e}_j \cdot h + \mathbf{e}_i \cdot h) - f(\mathbf{x}^0 - \mathbf{e}_j \cdot h - \mathbf{e}_i \cdot h)}{2 \cdot h}\right] / (2 \cdot h).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Use second-order finite differences to approximate the Hessian for

```
void f(int n, double *x, double& y) {
  int i=0:
  while (i < n) {
    x[i] = x[i] * x[i];
    i = i + 1:
  }
  i = 0:
  while (i < n) {
    if (i = = 0)
       y=x[i];
    else
      y=y+x[i];
    i = i + 1:
  }
  y=y*y;
}
```

^ ~/fd/sofd.cpp

Can we avoid truncation? YES, WE CAN!

 \rightarrow For the given tangent model of $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, implement its tangent model

```
y^{(1,2)} = \mathbf{x}^{(1)^T} \cdot \nabla^2 f(\mathbf{x}) \cdot \mathbf{x}^{(2)}.
```

At most n^2 runs of the second-order tangent code are required to obtain the whole Hessian with machine accuracy.

```
^ ~/gt2s_gt1s/gt2s_gt1s.cpp
```

< □ > < 部 > < 差 > < 差 > 差 ● Q (~ 119/202

Can we reduce the computational cost? YES, WE CAN!

 \rightarrow For a given adjoint model of $F : \mathbb{R}^n \rightarrow \mathbb{R}^m$, implement its tangent model

$$\mathbf{x}_{(1)}^{(2)} = \mathbf{x}_{(1)}^{(2)} + y_{(1)} \cdot \nabla^2 f(\mathbf{x}) \cdot \mathbf{x}^{(2)}.$$

At most $m \cdot n$ runs of the second-order adjoint code are required to obtain the whole Hessian with machine accuracy.

^/gt2s_ga1s/gt2s_ga1s.cpp

Challenger: Algorithmic Differentiation

Challenger: Algorithmic Differentiation

Use second-order central finite differences for the approximation of the Hessian of the product reduction $% \left({{{\left[{{{C_{\rm{B}}} \right]}} \right]}_{\rm{B}}} \right)$

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```


A second-order tangent code $F^{(1,2)}$: $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m$,

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y}^{(2)} \\ \mathbf{y}^{(1)} \\ \mathbf{y}^{(1,2)} \end{pmatrix} = F^{(1,2)}(\mathbf{x}, \mathbf{x}^{(2)}, \mathbf{x}^{(1)}, \mathbf{x}^{(1,2)}),$$

computes a mixture of first and second derivative information alongside with the function value as follows:

$$y := F(\mathbf{x})$$

$$y^{(2)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

$$y^{(1)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

$$y^{(1,2)} := \mathbf{x}^{(1)^{T}} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}^{(2)} + \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1,2)}$$

$$\mathbf{x}^{(1)^{T}} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

◆□ → < 部 → < 差 → < 差 → 差 の Q ペ 125/202

Define

$$\mathbf{v}^{(2)} \equiv \frac{\partial \mathbf{v}}{\partial s}$$

for $\mathbf{v} \in {\{\mathbf{x}, \mathbf{x}^{(1)}, y, y^{(1)}\}}$ and some auxiliary $s \in D_s \subseteq \mathbb{R}$ assuming that $F^{(1)}(\mathbf{x}(s), \mathbf{x}^{(1)}(s))$ is continuously differentiable over D_s . Set $\mathbf{v}^{(1)(2)} = \mathbf{v}^{(1,2)}$. By the chain rule of differential calculus

$$\frac{\partial (\nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)})}{\partial s} = \frac{\partial (\mathbf{x}^{(1)^{T}} \cdot \nabla F(\mathbf{x})^{T})}{\partial s}$$
$$= \frac{\partial \mathbf{x}^{(1)^{T}}}{\partial s} \cdot \nabla F(\mathbf{x})^{T} + \mathbf{x}^{(1)^{T}} \cdot \frac{\partial \nabla F(\mathbf{x})}{\partial s}$$
$$= \mathbf{x}^{(1,2)^{T}} \cdot \nabla F(\mathbf{x})^{T} + \mathbf{x}^{(1)^{T}} \cdot \frac{\partial \nabla F(\mathbf{x})^{T}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial s}$$
$$= \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1,2)} + \mathbf{x}^{(1)^{T}} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

Recall:

$$\frac{\partial A(\mathbf{x}) \cdot B(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial A(\mathbf{x})}{\partial \mathbf{x}} \cdot B(\mathbf{x}) + A(\mathbf{x}) \cdot \frac{\partial B(\mathbf{x})}{\partial \mathbf{x}}$$

nag

126 / 202

$$y := F(\mathbf{x})$$

$$y^{(2)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

$$y^{(1)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

$$y^{(1,2)} := \mathbf{x}^{(1)^T} \cdot \nabla^2 F(\mathbf{x}) \cdot \mathbf{x}^{(2)} + \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1,2)}$$

・ロト ・回 ・ ・ ヨト ・ ヨト

Э

127 / 202


```
1 #include <iostream >
2 using namespace std;
3
  #include "dco.hpp"
  using namespace dco;
7 typedef gt1s<double> AD_BASE_MODE;
  typedef AD_BASE_MODE::type AD_BASE_TYPE;
  typedef gt1s<AD_BASE_TYPE> AD_MODE:
  typedef AD_MODE::type AD_TYPE;
10
11
  template<typename T>
12
  void f(int n, const T *x, T& y) { y=x[0]/x[1]; }
13
14
15
  void driver (int n, const double \times xv, double \& yv, double \ast g, double \ast h)
    AD_TYPE *x=new AD_TYPE[n], y;
16
    for (int i=0,c=0;i<n;i++) {
17
       for (int i=0; i <=i; i++) {
18
         for (int k=0; k < n; k++) x[k]=xv[k];
19
         derivative (value (x[i]) = 1;
20
         value(derivative(x[i]))=1;
21
         f(n,x,y);
22
         h[c++]=derivative(derivative(y));
       }
24
      g[i]=derivative(value(y));
25
26
                                                         ヘロン 人間と 人間と 人間と
```

128 / 202


```
yv=passive_value(y);
27
     delete [] x;
28
29
30
   int main() {
31
     const int n=2;
32
     double x[n] = \{2.71, 3.14\}, y, h[n*(n+1)/2], g[n];
33
     cout.precision(15);
34
     driver(n,x,y,g,h);
35
     cout \ll "y=" \ll y \ll endl:
36
     for (int i=0; i < n; i++)
37
       cout << "g[" << i << "]=" << g[i] << endl;
38
     cout \ll "h=[" \ll end]:
39
     for (int i=0, c=0; i < n; i++) {
40
       for (int i=0; i <=i; i++)
41
          cout \ll h[c++] \ll " \setminus t";
42
       cout << endl:
43
44
     cout << "]" << endl;
45
     return 0:
46
47 }
```

~/gt2s_gt1s/gt2s_gt1s_simple.cpp

Live:

implementation of driver fgh for given instantiation of

```
template<class T>
void f(int n, T *x, T& y) {
    ...
}
```

with dco::gt1s<dco::gt1s<double>::type.

build and run

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


```
void fgh(int n, const double x, double y, double g, double h) {
  T2S_T1S_TYPE *t1s_x=new T2S_T1S_TYPE[n], t1s_y;
 T1S TYPE v:
  int |=0:
  for (int i=0; i < n; i++) {
    for (int i=0; i<=i; i++) {
      for (int k=0; k<n; k++) t1s_x[k]=x[k];
      dco::set_derivative(dco::get_value(t1s_x[i]),1);
      dco::set_value(dco::get_derivative(t1s_x[i]),1);
      f(n,t1s_x,t1s_y);
      h[l++]=dco::get_derivative(dco::get_derivative(t1s_y));
    }
    g[i]=dco::get_value(dco::get_derivative(t1s_y));
  y=dco::get_value(dco::get_value(t1s_y));
  delete [] t1s_x;
}
```


132 / 202

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Use dco/c++ to generate a second-order tangent version of the product reduction

$$y = \prod_{i=0}^{n-1} x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the Hessian.

A second-order adjoint code generated in tangent over adjoint mode

 $F_{(1)}^{(2)}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R},$

$$\begin{pmatrix} \mathbf{y} \\ \mathbf{y}^{(2)} \\ \mathbf{x}^{(1)}_{(1)} \\ \mathbf{x}^{(2)}_{(1)} \\ \mathbf{y}^{(2)}_{(1)} \\ \mathbf{y}^{(2)}_{(1)} \end{pmatrix} = F_{(1)}^{(2)}(\mathbf{x}, \mathbf{x}^{(2)}, \mathbf{x}_{(1)}, \mathbf{x}^{(2)}_{(1)}, y_{(1)}, y_{(1)}^{(2)}),$$

computes

$$y := F(\mathbf{x})$$

$$y^{(2)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

$$\mathbf{x}_{(1)} := \mathbf{x}_{(1)} + \nabla F(\mathbf{x})^{T} \cdot y_{(1)}$$

$$\mathbf{x}_{(1)}^{(2)} := \mathbf{x}_{(1)}^{(2)} + y_{(1)} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}^{(2)} + \nabla F(\mathbf{x})^{T} \cdot y_{(1)}^{(2)}$$

$$y_{(1)} := 0$$

$$y_{(1)}^{(2)} := 0$$

133 / 202

$$y_{(1)} \cdot \nabla^2 F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

Consider

$$\mathbf{v}^{(2)} \equiv \frac{\partial \mathbf{v}}{\partial s}$$

for $\mathbf{v} \in {\mathbf{x}, \mathbf{x}_{(1)}, y, y_{(1)}}$ and assuming that $F_{(1)}(\mathbf{x}(s), \mathbf{x}_{(1)}(s), y_{(1)}(s)$ is continuously differentiable over D_s .

By the chain rule of differential calculus

$$\frac{\partial (\nabla F(\mathbf{x})^T \cdot y_{(1)})}{\partial s} = \frac{\partial \nabla F(\mathbf{x})^T}{\partial s} \cdot y_{(1)} + \nabla F(\mathbf{x})^T \cdot \frac{\partial y_{(1)}}{\partial s}$$
$$= \frac{\partial \nabla F(\mathbf{x})^T}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial s} \cdot y_{(1)} + \nabla F(\mathbf{x})^T \cdot y_{(1)}^{(2)}$$
$$= y_{(1)} \cdot \nabla^2 F(\mathbf{x}) \cdot \mathbf{x}^{(2)} + \nabla F(\mathbf{x})^T \cdot y_{(1)}^{(2)}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

$$y := F(\mathbf{x})$$

$$y^{(2)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

$$\mathbf{x}_{(1)} := \mathbf{x}_{(1)} + \nabla F(\mathbf{x})^{T} \cdot y_{(1)}$$

$$\mathbf{x}_{(1)}^{(2)} := \mathbf{x}_{(1)}^{(2)} + y_{(1)} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}^{(2)}$$

$$+ \nabla F(\mathbf{x})^{T} \cdot y_{(1)}^{(2)}$$

・ロ ・ ・ 日 ・ ・ 注 ・ ・ 注 ・ う へ で 136 / 202

Second-Order Adjoint Code (Tangent over Adjoint)

Toy Problem with dco/c++

```
1 #include <iostream >
2 using namespace std;
3
  #include "dco.hpp"
5 using namespace dco;
7 typedef gt1s<double> AD_BASE_MODE;
8 typedef AD_BASE_MODE::type AD_BASE_TYPE:
 typedef gals<AD_BASE_TYPE> AD_MODE:
10 typedef AD_MODE::type AD_TYPE;
11 typedef AD_MODE::tape_t AD_TAPE_TYPE;
12 AD_TAPE_TYPE*& AD_TAPE_POINTER=AD_MODE::global_tape;
  template < typename T >
14
  void f(int n, const T *x, T& y) { y=x[0]/x[1]; }
15
16
  void driver(int n, const double* xv, double& yv, double* g. double* h) {
17
    AD_TAPE_POINTER=AD_TAPE_TYPE :: create();
18
    AD_TYPE *x=new AD_TYPE[n], *x_in=new AD_TYPE[n], y;
19
    for (int i=0,c=0;i<n;i++) {
20
       for (int i=0; i<n; i++) {
21
         \times[i]=\timesv[i];
22
        AD_TAPE_POINTER \rightarrow register_variable(x[i]);
23
         x_i n[i] = x[i];
24
       }
25
       derivative (value (x[i]))=1;
26
```



```
f(n, x, y);
27
       AD_TAPE_POINTER->register_output_variable(y);
28
       value (derivative (y)) =1;
29
       AD_TAPE_POINTER->interpret_adjoint();
30
31
       for (int i=0; i <=i; i++)
         h[c++]=derivative(derivative(x_in[i]));
32
       AD_TAPE_POINTER->reset();
33
       g[i]=derivative(value(y));
34
     ł
35
     yv = value(value(y));
36
    AD_TAPE_TYPE : : remove (AD_TAPE_POINTER) :
37
38
  }
39
40
  int main() {
     const int n=2;
41
     double x[n] = \{2.71, 3.14\}, y, g[n], h[n*(n+1)/2];
42
    cout.precision(15);
43
     driver(n,x,y,g,h);
44
     cout << "y=" << y << endl;
45
     for (int i=0; i < n; i++)
46
       cout << "g[" << i << "]=" << g[i] << endl;
47
     cout << "h=[" << end]:
48
     for (int i=0, c=0; i < n; i++) {
49
       for (int i=0; i <=i; i++)
50
         cout \ll h[c++] \ll " \setminus t";
51
       cout << endl:
52
```

nag

138 / 202


```
53 }
54 cout << "]" << endl;
55 return 0;
56 }</pre>
```

```
^/gt2s_ga1s/gt2s_ga1s_simple.cpp
```


Live:

```
implementation of driver fgh for given
template<class T>
void f(int n, T *x, T& y) {
    ...
}
```

```
build and run
```



```
void driver(const double x[n], double& y, double h[][2]) {
  T2S_A1S_TAPE_POINTER=T2S_A1S_MODE :: tape :: create();
  T2S_A1S_TYPE t2s_a1s_x[n], t2s_a1s_y;
  for (int i=0; i < n; i++)
    for (int j=0; j < n; j++) {
      t_{2s_a_{1s_x}[j]=x[j];}
      T2S_A1S_TAPE_POINTER->register_variable(t2s_a1s_x[i]);
    }
    dco::set_derivative(dco::get_value(t2s_a1s_x[i]),1);
    f(t2s_a1s_x,t2s_a1s_y);
    T2S_A1S_TAPE_POINTER \rightarrow register_output_variable(t2s_a1s_y);
    dco::set_value(dco::get_derivative(t2s_a1s_y),1);
    T2S_A1S_TAPE_POINTER->interpret_adjoint();
    for (int i=0; i<n; i++)
      h[i][j]=dco::get_derivative(dco::get_derivative(t2s_a1s_x[j]));
    T2S_A1S_TAPE_POINTER->reset():
  y=dco::get_value(dco::get_value(t2s_a1s_y));
  T2S_A1S_MODE :: tape :: remove(T2S_A1S_TAPE_POINTER):
```

```
・ロ ・ < 部 ・ < 差 ・ < 差 ・ 差 う へ で

141/202
```


142 / 202

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Use dco/c++ to generate a second-order adjoint (tangent over adjoint) version of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the Hessian.

A second-order adjoint code generated in adjoint over tangent mode

 $F_{(2)}^{(1)}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R},$

$$\begin{pmatrix} y \\ y^{(1)} \\ \mathbf{x}_{(2)} \\ \mathbf{x}_{(2)}^{(1)} \\ y^{(1)}_{(2)} \\ y^{(1)}_{(2)} \end{pmatrix} = F_{(2)}^{(1)}(\mathbf{x}, \mathbf{x}_{(2)}, \mathbf{x}^{(1)}, \mathbf{x}_{(2)}^{(1)}, y_{(2)}, y_{(2)}^{(1)}),$$

computes

$$y := F(\mathbf{x})$$

$$y^{(1)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

$$\mathbf{x}_{(2)} := \mathbf{x}_{(2)} + \nabla F(\mathbf{x})^T \cdot y_{(2)} + y^{(1)}_{(2)} \cdot \nabla^2 F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

$$\mathbf{x}^{(1)}_{(2)} := \mathbf{x}^{(1)}_{(2)} + \nabla F(\mathbf{x})^T \cdot y^{(1)}_{(2)}$$

$$y_{(2)} := 0$$

$$y^{(1)}_{(2)} := 0$$

143 / 202

$$y_{(1)}^{(2)} \cdot \nabla^2 F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

ヘロン 人間と 人間と 人間と

Second-Order Adjoint Code (Adjoint over Tangent)

```
1 #include <iostream >
2 #include <vector >
3 using namespace std;
5 #include "dco.hpp"
6 using namespace dco:
8 typedef gals<double> AD_BASE_MODE:
9 typedef AD_BASE_MODE::type AD_BASE_TYPE:
10 typedef gt1s<AD_BASE_TYPE> AD_MODE;
11 typedef AD_MODE::type AD_TYPE:
12 typedef AD_BASE_MODE::tape_t AD_TAPE_TYPE;
  AD_TAPE_TYPE*& AD_TAPE_POINTER=AD_BASE_MODE :: global_tape;
13
14
  template<typename T>
15
  void f(int n, const T *x, T&y) { y=x[0]/x[1]; }
16
17
  void driver(int n, const double* xv, double& yv, double* g, double* h) {
18
    AD_TAPE_POINTER=AD_TAPE_TYPE :: create():
19
    AD_TYPE *x=new AD_TYPE[n]; AD_TYPE *x_in=new AD_TYPE[n];
20
    AD_TYPE v:
21
    for (int i=0,c=0;i<n;i++) {
22
      for (int i=0; i<n; i++) {
23
        x[i] = xv[i]:
24
        AD_TAPE_POINTER \rightarrow register_variable(value(x[j]));
25
        AD_TAPE_POINTER \rightarrow register_variable(derivative(x[i]));
26
```


nag

147 / 202

Toy Problem with dco/c++ (cont.)

```
x_in[j]=x[j];
27
28
       value(derivative(x[i]))=1;
29
       f(n,x,y);
30
31
       AD_TAPE_POINTER->register_output_variable(value(y));
       AD_TAPE_POINTER \rightarrow register_output_variable(derivative(y));
32
       derivative (derivative (y) = 1;
33
       AD_TAPE_POINTER—>interpret_adjoint();
34
       for (int j=0; j \le i; j++)
35
         h[c++] = derivative(value(x_in[j]));
36
       AD_TAPE_POINTER->reset():
37
       g[i]=value(derivative(v));
38
39
    yy = passive_value(y);
40
    AD_TAPE_TYPE :: remove (AD_TAPE_POINTER);
41
     delete [] x; delete [] x_in;
42
43
44
  int main() {
45
46
     const int n=2;
     double x[n] = \{2.71, 3.14\}, y, g[n], h[n*(n+1)/2];
47
    cout.precision(15);
48
     driver(n,x,y,g,h);
49
    cout \ll "y=" \ll y \ll endl;
50
    for (int i=0; i < n; i++)
51
       cout << "g[" << i << "]=" << g[i] << endl;
52
```


nag

148 / 202

```
cout \ll "h=[" \ll endl;
53
     for (int i=0, c=0; i < n; i++) {
54
       for (int j=0; j<=i; j++)
55
          cout \ll h[c++] \ll '\t";
56
       cout << endl;
57
     }
58
     cout << "]" << endl;
59
     return 0:
60
61 }
```

~/ga2s_gt1s/ga2s_gt1s_simple.cpp

Live:

implementation of driver fgh for given

```
template<class T>
void f(vector<T> &x, T& y) {
    ...
}
```

build and run

・ ・ ・ 一 ・ ・ 言 ・ ・ 言 ・ う へ で
 149 / 202


```
nag
```

```
void fgh(int n, const double* x, double& y, double* g, double* h) {
    A1S_TAPE_POINTER=A1S_MODE :: tape :: create();
    vector <A2S_T1S_TYPE> t2s_a1s_x(n), t2s_a1s_x_in(n);
    A2S_T1S_TYPE t2s_a1s_v;
    A1S_TYPE v:
    int |=0:
    for (int i=0; i < n; i++) {
        for (int i=0; i<n; i++) {
            t2s_a1s_x[i] = x[i];
            A1S_TAPE_POINTER—> register_variable (dco:: get_value(t2s_a1s_x[j
                 1)):
            A1S_TAPE_POINTER->register_variable (dco::get_derivative (
                 t2s_a1s_x[i]));
            t2s_a1s_x_in[j]=t2s_a1s_x[j];
        dco::set_value(dco::get_derivative(t2s_a1s_x[i]),1);
        f(t2s_a1s_x,t2s_a1s_y);
        A1S_TAPE_POINTER->register_output_variable(dco::get_value(t2s_a1s_y
            ));
        A1S_TAPE_POINTER—>register_output_variable(dco::get_derivative(
             t2s_a1s_v)):
        dco:: set_derivative(dco:: get_derivative(t2s_a1s_y),1);
        A1S_TAPE_POINTER->interpret_adjoint();
                                                   ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○
```


}

152 / 202

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Use dco/c++ to generate a second-order adjoint (adjoint over tangent) version of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the Hessian.

A second-order adjoint code generated in adjoint over adjoint mode

 $F_{(1,2)}: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R},$

$$\begin{pmatrix} y \\ \mathbf{x}_{(1)} \\ y_{(1)} \\ \mathbf{x}_{(2)} \\ y_{(1,2)} \\ y_{(2)} \end{pmatrix} = F_{(1,2)}(\mathbf{x}, \mathbf{x}_{(2)}, \mathbf{x}_{(1)}, \mathbf{x}_{(1,2)}, y_{(1)}, y_{(2)}),$$

computes

$$y := F(\mathbf{x})$$

$$\mathbf{x}_{(1)} := \mathbf{x}_{(1)} + \nabla F(\mathbf{x})^{T} \cdot y_{(1)}$$

$$y_{(1)} := 0$$

$$\mathbf{x}_{(2)} := \mathbf{x}_{(2)} + \nabla F(\mathbf{x})^{T} \cdot y_{(2)} + y_{(1)} \cdot \nabla^{2} F(\mathbf{x}) \cdot \mathbf{x}_{(1,2)}$$

$$y_{(1,2)} := \nabla F(\mathbf{x})^{T} \cdot \mathbf{x}_{(1,2)}$$

$$y_{(2)} := 0$$

153 / 202

$$\mathbf{x}_{(1,2)} \cdot y_{(1)} \cdot \nabla^2 F(\mathbf{x})$$

Second-Order Adjoint (Adjoint over Adjoint) Adjoint-Augmented Adjoint IDAG

Second-Order Adjoint Code (Adjoint over Adjoint)

nag

156 / 202

Toy Problem with dco/c++

```
1 #include <iostream >
2 #include <vector >
3 using namespace std:
5 #include "dco.hpp"
6 using namespace dco:
8 typedef gals<double> AD_BASE_MODE:
9 typedef AD_BASE_MODE::type AD_BASE_TYPE:
10 typedef AD_BASE_MODE::tape_t AD_BASE_TAPE_TYPE;
11 typedef ga1s<AD_BASE_TYPE> AD_MODE;
12 typedef AD_MODE::type AD_TYPE;
13 typedef AD_MODE::tape_t AD_TAPE_TYPE;
14 AD_BASE_TAPE_TYPE*& AD_BASE_TAPE_POINTER=AD_BASE_MODE :: global_tape :
  AD_TAPE_TYPE*& AD_TAPE_POINTER=AD_MODE:: global_tape;
15
16
17 template<typename T>
  void f(int n, const T *x, T& y) { y=x[0]/x[1]; }
18
19
  void driver(int n, const double* xv, double& yv, double* g, double* h) {
20
      AD_TYPE* x=new AD_TYPE[n], *x_in=new AD_TYPE[n];
21
      AD_TYPE y;
22
23
      AD_BASE_TAPE_POINTER=AD_BASE_TAPE_TYPE :: create();
      AD_TAPE_POINTER=AD_TAPE_TYPE :: create();
24
      for (int i=0; i<n; i++) {
25
        \times[i]=\timesv[i]:
26
                                                       ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○
```


Toy Problem with dco/c++ (cont.)

```
AD_BASE_TAPE_POINTER \rightarrow register_variable(value(x[i]));
27
         AD_TAPE_POINTER->register_variable(x[i]):
28
         x_i n[j] = x[j];
29
30
       f(n,x,y);
31
      AD_BASE_TYPE & ya=derivative(y);
32
      va = 1.0;
      AD_BASE_TAPE_POINTER->register_variable(ya);
34
      AD_TAPE_POINTER->interpret_adjoint();
35
       for (int i=0; i<n; i++)
36
         g[i]=value(derivative(x_in[i]));
37
       for (int i=0, c=0; i < n; i++) {
38
         derivative (derivative (x_in [i]))=1;
39
         AD_BASE_TAPE_POINTER->interpret_adjoint();
40
         for (int i=0; i \le i : i++)
41
           h[c++]=derivative(value(x_in[j]));
42
         AD_BASE_TAPE_POINTER->zero_adjoints();
43
       }
44
      yv=passive_value(y);
45
      AD_BASE_TAPE_TYPE :: remove (AD_BASE_TAPE_POINTER);
46
      AD_TAPE_TYPE : : remove (AD_TAPE_POINTER);
47
       delete [] x: delete [] x_in:
48
  }
49
50
  int main() {
51
    const int n=2:
52
```

nag

157 / 202

nag

158 / 202

```
double x[n] = \{2.71, 3.14\}, y, g[n], h[n*(n+1)/2];
53
     cout.precision(15);
54
     driver(n,x,y,g,h);
55
     cout \ll "y=" \ll y \ll endl;
56
     for (int i=0; i < n; i++)
57
        cout << "g[" << i << "]=" << g[i] << endl;
58
     cout \ll "h=[" \ll endl;
59
     for (int i=0, c=0; i < n; i++) {
60
       for (int i=0; i <=i; i++)
61
          cout \ll h[c++] \ll " \setminus t";
62
       cout << endl:
63
64
     cout << "]" << endl;
65
     return 0:
66
67 }
```

~/ga2s_ga1s/ga2s_ga1s_simple.cpp

Live:

implementation of driver fgh for given

```
template<class T>
    void f(vector<T> &x, T& y) {
    ...
}
```

```
build and run
```


^{160 / 202}


```
for (int i=0;i<n;i++) {
    dco::set_derivative(dco::get_derivative(t2s_als_x_in[i]),1.0);
    AlS_TAPE_POINTER=>interpret_adjoint();
    for (int j=0;j<=i;j++)
        h[1++] = dco::get_derivative(dco::get_value(t2s_als_x_in[j]));
    AlS_TAPE_POINTER=>zero_adjoints();
}
y = dco::get_passive_value(t2s_als_y);
```

A1S_MODE:: tape:: remove(A1S_TAPE_POINTER); A2S_A1S_MODE:: tape:: remove(A2S_A1S_TAPE_POINTER);

}

162 / 202

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○

Use dco/c++ to generate a second-order adjoint (adjoint over adjoint) version of the product reduction

$$y=\prod_{i=0}^{n-1}x_i$$

```
implemented as
void f(int n, double *x, double& y) {
    int i=1;
    y=x[0];
    while (i<n) {
        y=y*x[i];
        i=i+1;
    }
}</pre>
```

and use it for the computation of the Hessian.

${\sf Outlook}$

▲ □ ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ▶ ▲ ● ♥ ○ ○
 164 / 202

Outlook: AD in Numerical Methods Newton's Method for Systems of Nonlinear Equations

Wanted: Solution to system of *n* nonlinear equations $F(\mathbf{x}) = 0$

In:

- → implementation of the residual **y** at the current point $\mathbf{x} \in \mathbb{R}^n$: $F : \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{y} = F(\mathbf{x})$
- → implementation of the Jacobian $A \equiv \nabla F(\mathbf{x})$ of the residual at the current point \mathbf{x} : $F' : \mathbb{R}^n \to \mathbb{R}^{n \times n}, A = F'(\mathbf{x})$
- → solver for computing the Newton step $d\mathbf{x} \in \mathbb{R}^n$ as the solution of the linear Newton system $A \cdot d\mathbf{x} = -\mathbf{y}$: $s : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}^n$, $d\mathbf{x} = s(\mathbf{y}, A)$
- \rightarrow starting point: $\mathbf{x} \in {\rm I\!R}^n$
- ightarrow upper bound on the norm of the residual $\|F(\mathbf{x})\|$ at the approximate solution: $\epsilon \in {\rm I\!R}$

Out:

 \leftarrow approximate solution of the nonlinear system $F(\mathbf{x}) = 0$: $\mathbf{x} \in \mathbb{R}^n$

nag

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

166 / 202

Algorithm:

1: $\mathbf{y} = F(\mathbf{x})$ 2: while $||\mathbf{y}|| > \epsilon$ do 3: $A = F'(\mathbf{x})$ 4: $d\mathbf{x} = s(\mathbf{y}, A)$ 5: $\mathbf{x} \leftarrow \mathbf{x} + d\mathbf{x}$ 6: $\mathbf{y} = F(\mathbf{x})$ 7: end while

Wanted: Solution to $\operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$

In:

- → implementation of the objective $y \in \mathbb{R}$ at the current point $\mathbf{x} \in \mathbb{R}^n$: $f : \mathbb{R}^n \to \mathbb{R}, y = f(\mathbf{x})$
- → implementation of f' for computing the objective $y \equiv f(\mathbf{x})$ and its gradient $\mathbf{g} \equiv \nabla f(\mathbf{x})$ at the current point \mathbf{x} : $f' : \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}^n$, $(y, \mathbf{g}) = f'(\mathbf{x})$
- \rightarrow starting point: $\mathbf{x} \in {\rm I\!R}^n$
- ightarrow upper bound on gradient norm $\|\mathbf{g}\|$ at the approximate minimal point: $\epsilon \in \mathbb{R}$

Out:

- \leftarrow approximate minimal value of the objective: $y \in {\rm I\!R}$
- \leftarrow approximate minimal point: $\mathbf{x} \in {\rm I\!R}^n$

168 / 202

Algorithm:

- 1: repeat
- 2: (y, g) = f'(x)3: if $\|\mathbf{g}\| > \epsilon$ then 4: $\alpha \leftarrow 1$ 5: $\tilde{y} \leftarrow y$ 6: while $\tilde{y} \ge y$ do $\tilde{\mathbf{x}} \leftarrow \mathbf{x} - \alpha \cdot \mathbf{g}$ 7: $\tilde{y} = f(\tilde{\mathbf{x}})$ 8: $\alpha \leftarrow \alpha/2$ 9: end while 10: $\mathbf{x} \leftarrow \tilde{\mathbf{x}}$ 11: end if 12: 13: until $\|\mathbf{g}\| \leq \epsilon$

STCE Outlook: AD in Numerical Methods Gradient Descent for Unconstrained Convex Nonlinear Optimization – Race nag

Considering

$$\operatorname{argmin}_{\mathbf{x} \in \mathbf{R}^n} \left(\sum_{i=0}^{n-1} x_i^2 \right)^2$$

n	$f(\mathbf{x} + \mathbf{e}_i \cdot h)$	$f^{(1)}$	f ₍₁₎
100	13	8	< 1
200	47	28	1
300	104	63	2
400	184	113	2.5
500	284	173	3
1000	1129	689	6

Wanted: Solution to $\operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$

In:

- → implementation of the objective $y \in \mathbb{R}$ at the current point $\mathbf{x} \in \mathbb{R}^n$: $f : \mathbb{R}^n \to \mathbb{R}, y = f(\mathbf{x})$
- → implementation of the differentiated objective function f' for computing the objective $y \equiv f(\mathbf{x})$ and its gradient $\mathbf{g} \equiv \nabla f(\mathbf{x})$ at the current point \mathbf{x} : $f': \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}^n, (y, \mathbf{g}) = f'(\mathbf{x})$
- → implementation of the differentiated objective function f'' for computing the objective y, its gradient g, and its Hessian $H \equiv \nabla^2 f(\mathbf{x})$ at the current point x: $f'' : \mathbb{R}^n \to \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^{n \times n}$, $(y, g, H) = f''(\mathbf{x})$
- → solver to determine the Newton step $d\mathbf{x} \in \mathbb{R}^n$ as the solution of linear Newton system $H \cdot d\mathbf{x} = -\mathbf{g}$: $s : \mathbb{R}^n \times \mathbb{R}^{n \times n} \to \mathbb{R}^n$, $d\mathbf{x} = s(\mathbf{g}, H)$
- \rightarrow starting point: $\mathbf{x} \in {\rm I\!R}^n$
- ightarrow upper bound on the gradient norm $\|\mathbf{g}\|$ at the approximate solution: $\epsilon \in {
 m I\!R}$

Out:

 \leftarrow approximate minimal value: $y \in {\rm I\!R}$

 \leftarrow approximate minimal point: $\mathbf{x} \in \mathbb{R}^n$

Algorithm:

1: (y, g) = f'(x)2: while $\|\mathbf{g}\| > \epsilon$ do 3: $(y, \mathbf{g}, H) = f''(\mathbf{x})$ 4: $d\mathbf{x} = s(\mathbf{g}, H)$ 5: $\alpha \leftarrow 1$ 6: $\tilde{v} \leftarrow v$ $7 \cdot \tilde{\mathbf{x}} \leftarrow \mathbf{x}$ 8: while $\tilde{y} \ge y$ do $\tilde{\mathbf{x}} \leftarrow \tilde{\mathbf{x}} - \alpha \cdot d\mathbf{x}$ 9: $\tilde{y} = f(\tilde{\mathbf{x}})$ 10: $\alpha \leftarrow \alpha/2$ 11: end while 12: 13: $\mathbf{x} \leftarrow \tilde{\mathbf{x}}$ 14: (y, g) = f'(x)15: end while

Newton's Method for Unconstrained Convex Nonlinear Optimization

Outlook: AD in Numerical Methods

Considering

HAACHEN

S

$$\operatorname{argmin}_{\mathbf{x}\in\mathbf{R}^n}\left(\sum_{i=0}^{n-1} x_i^2\right)^2$$

n	$f(\mathbf{x} + \mathbf{e}_i \cdot h)$	$f^{(1,2)}$	$f_{(1)}^{(2)}$	$f_{(1)}^{(2)} \cdot v$
100	< 1	< 1	< 1	< 1
200	2	1	< 1	< 1
300	7	3	1	< 1
400	17	9	4	< 1
500	36	21	10	< 1
1000	365	231	138	< 1
:	:	:	:	:
10 ⁵	$> 10^4$	$> 10^4$	$> 10^4$	1

172 / 202

Live: Derivative of 109 iterations of

$$x = \sin(x \cdot p)$$

by

~/outlook/checkpointing/ga1s_split.cpp (TODO)

 $\Rightarrow \texttt{std::bad_alloc}$

Э

- symbolic tangents and adjoints of numerical methods
 integration of differentiated numerical libraries
- preaccumulation
- hybrid overloading / source transformation
- local finite differencing

Conclusion

- AD is conceptually simple.
- Application to large codes requires in-depth understanding of their structure; can be tedious and error-prone.
- AD tool support is highly desirable and use is convenient.
- AD should become part of your software engineering strategy.
- Further (course) work is necessary in order to obtain robust, efficient, and scalable derivative code when using tool support.

- Further Modules
 - AD manually Advanced Topics
 - AD by OL with dco Advanced Topics
- In-house courses

A. Griewank and A. Walther.

Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Number 105 in Other Titles in Applied Mathematics. SIAM, Philadelphia, PA, 2nd edition, 2008.

U. Naumann.

The Art of Differentiating Computer Programs. An Introduction to Algorithmic Differentiation.

Number 24 in Software, Environments, and Tools. SIAM, Philadelphia, PA, 2012.

Multivariate Vector Function (Example)


```
\begin{array}{l} \mbox{template} <\mbox{typename T>} \\ \mbox{void } f(\mbox{const} vector <\mbox{T>\&} x\,, vector <\mbox{T>\&} y) \ \{ \\ T \ v=\mbox{tan} (x[2]*x[3])\,; \ T \ w=\mbox{x}[1]-v\,; \\ y[0]=x[0]*v/w; \\ y[1]=y[0]*x[1]\,; \\ \} \end{array}
```



```
#include <vector>
using namespace std;
#include "dco.hpp"
using namespace dco:
typedef double AD_BASE_TYPE;
typedef gt1s<AD_BASE_TYPE> AD_MODE;
typedef AD_MODE::type AD_TYPE;
#include "f.hpp"
void driver(
    const vector<double>& xv, const vector<double>& xt,
    vector<double>& vv, vector<double>& vt
) {
  const int n=xv.size(), m=yv.size();
  vector \langle AD_TYPE \rangle \times (n), y(m);
  for (int i=0; i < n; i++) { value(x[i])=xv[i]; derivative(x[i])=xt[i]; }
  f(x,y):
  for (int i=0; i < m; i++) { yv[i]=value(y[i]); yt[i]=derivative(y[i]);  }
}
```


184 / 202

イロト イポト イヨト イヨト 二日

The Jacobian of F at point $\mathbf{x} = (1, 1, 1, 1)^T$ is equal to

$$\nabla F(\mathbf{x}) = \begin{pmatrix} -2.79402 & -5.01252 & 11.025 & 11.025 \\ -2.79402 & -7.80654 & 11.025 & 11.025 \end{pmatrix}$$

Consequently, the sum of its columns is computed as the first directional derivative of F with respect to x in direction $x^{(1)} = (1, 1, 1, 1)$, that is,

$$\mathbf{y}^{(1)} := \nabla F(\mathbf{x}) \cdot \mathbf{x}^{(1)}$$

= $\begin{pmatrix} -2.79402 & -5.01252 & 11.025 & 11.025 \\ -2.79402 & -7.80654 & 11.025 & 11.025 \end{pmatrix} \cdot \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix} = \begin{pmatrix} 14.2435\\ 11.4495 \end{pmatrix}.$


```
#include <vector>
using namespace std;
#include "dco.hpp"
using namespace dco;
typedef double AD_BASE_TYPE;
typedef gals<AD_BASE_TYPE> AD_MODE:
typedef AD_MODE::type AD_TYPE:
typedef AD_MODE::tape_t AD_TAPE_TYPE;
#include "../gt1s/f.hpp"
void driver(
    const vector<double>& xv, vector<double>& xa,
    vector<double>& vv. vector<double>& va
) {
  AD_MODE::global_tape=AD_TAPE_TYPE::create();
  int n=xv.size(), m=yv.size();
  vector \langle AD_TYPE \rangle \times (n), y(m);
  for (int i=0; i < n; i++) {
    \times[i]=\timesv[i];
    AD_MODE:: global_tape \rightarrow register_variable(x[i]);
  }
  f(x,y);
  for (int i=0; i < m; i++) {
```


}

```
AD_MODE::global_tape->register_output_variable(y[i]);
yv[i]=value(y[i]); derivative(y[i])=ya[i];
}
for (int i=0;i<n;i++) derivative(x[i])=xa[i];
AD_MODE::global_tape->interpret_adjoint();
for (int i=0;i<n;i++) xa[i]=derivative(x[i]);
for (int i=0;i<m;i++) ya[i]=derivative(y[i]);
AD_TAPE_TYPE::remove(AD_MODE::global_tape);
```


The Jacobian of F at point $\mathbf{x} = (1, 1, 1, 1)^T$ is equal to

$$\nabla F(\mathbf{x}) = \begin{pmatrix} -2.79402 & -5.01252 & 11.025 & 11.025 \\ -2.79402 & -7.80654 & 11.025 & 11.025 \end{pmatrix}.$$

Consequently, the shifted sum of its rows is computed as the first-order adjoint of Fwith respect to x in direction $\mathbf{y}_{(1)} = (1,1)^T$ added to $\mathbf{x}_{(1)} = (1,1)^T$, that is,

$$\mathbf{x}_{(1)} := \mathbf{x}_{(1)} + (\nabla F)^{T} \cdot \mathbf{y}_{(1)}$$

$$= \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} -2.79402 & -2.79402\\-5.01252 & -7.80654\\11.025 & 11.025\\11.025 & 11.025 \end{pmatrix} \cdot \begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} -4.58804\\-11.8191\\23.0501\\23.0501 \end{pmatrix} \cdot$$

4 ロ ト 4 部 ト 4 書 ト 4 書 ト 書 の 4 ペ
188 / 202

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < 部 > < 書 > < 書 > 差 》 < き > き の < で 190 / 202 Tensor Arithmetic E Second-Order Tangent Projection of Hessians (e.g. $A \equiv \nabla^2 F, F : \mathbb{R}^6 \to \mathbb{R}^4$)
nag

Note:

< A, v, u > = << A, v >, u > = << A, u >, v > = < A, u, v >

due to symmetry.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Note:

< w, A, v >=< w <, A, v >>=<< w, A >, v >=< v, < w, A >>=< v, w, A >

due to symmetry.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 192/202


```
#include <iostream >
using namespace std;
#include "dco.hpp"
using namespace dco;
typedef gt1s<double> AD_BASE_MODE:
typedef AD_BASE_MODE::type AD_BASE_TYPE;
typedef gt1s<AD_BASE_TYPE> AD_MODE:
typedef AD_MODE::type AD_TYPE:
#include "../gt1s/f.hpp"
void driver(
    const vector < double > & xv.
    const vector <double>& xt1,
    const vector < double > & xt2.
    const vector <double>& xt1t2.
    vector < double > & vv,
    vector <double>& vt1.
    vector <double>& yt2,
    vector <double>& vt1t2
) {
  const int n=xv.size(), m=yv.size();
  vector \langle AD_TYPE \rangle \times (n), y(m);
  for (int i=0; i < n; i++) {
    value(value(x[i]))=xv[i];
```

193 / 202

}

```
derivative(value(x[i]))=xt1[i];
value(derivative(x[i]))=xt2[i];
derivative(derivative(x[i]))=xt1t2[i];
}
f(x,y);
for (int i=0;i<m;i++) {
yv[i]=passive_value(y[i]);
yt1[i]=derivative(value(y[i]));
yt2[i]=value(derivative(y[i]));
yt1t2[i]=derivative(derivative(y[i]));
}
```


The Jacobian of F at point $\mathbf{x} = (1, 1, 1, 1)^T$ is equal to

$$\nabla F(\mathbf{x}) = \begin{pmatrix} -2.79402 & -5.01252 & 11.025 & 11.025 \\ -2.79402 & -7.80654 & 11.025 & 11.025 \end{pmatrix}$$

yielding for $\textbf{x}^{(1)} = \textbf{x}^{(2)} = (1,1,1,1)^{\mathcal{T}}$

$$\langle \nabla F(\mathbf{x}), \mathbf{x}^{(1)} \rangle = \langle \nabla F(\mathbf{x}), \mathbf{x}^{(2)} \rangle = \begin{pmatrix} 14.2435\\ 11.4495 \end{pmatrix}.$$

A serialization of the trailing dimension of the corresponding Hessian $\nabla^2 F(\textbf{x}) \in \mathbb{R}^{2 \times 4 \times 4}$ is equal to

$$\nabla^2 F(\mathbf{x}) = \begin{pmatrix} 0 & -5.01252 & 11.025 & 11.025 \\ 0 & -7.80654 & 11.025 & 11.025 \end{pmatrix} \\ \begin{pmatrix} -5.01252 & -17.9851 & 50.5833 & 50.5833 \\ -7.80654 & -28.0102 & 61.6084 & 61.6084 \end{pmatrix} \\ \begin{pmatrix} 11.025 & 50.5833 & -101.167 & -90.1416 \\ 11.025 & 61.6084 & -101.167 & -90.1416 \\ 11.025 & 50.5833 & -90.1416 & -101.167 \\ 11.025 & 61.6084 & -90.1416 & -101.167 \end{pmatrix} \\ \begin{pmatrix} -1.025 & 61.6084 & -90.1416 & -101.167 \\ -1.025 & 61.6084 & -90.1416 & -101.167 \\ -1.025 & 61.6084 & -90.1416 & -101.167 \end{pmatrix} \end{pmatrix}$$

✓) Q (195 / 202

★夏★

Second-Order Tangent Explained (cont.)

Lighthouse Example

The sum of the above four (2 \times 4)-matrices can be computed for $\textbf{x}^{(1)}=(1,1,1,1)^{T}$ as

$$< \nabla^2 F(\mathbf{x}), \mathbf{x}^{(1)} >= \begin{pmatrix} 17.0376 & 78.169 & -129.7 & -129.7 \\ 14.2435 & 87.4 & -118.675 & -118.675 \end{pmatrix}$$

The following product with $\mathbf{x}^{(2)} = (1, 1, 1, 1)^T$ yields

$$<\nabla^{2} F(\mathbf{x}), \mathbf{x}^{(1)}, \mathbf{x}^{(2)} \ge \equiv <<\nabla^{2} F(\mathbf{x}), \mathbf{x}^{(1)} >, \mathbf{x}^{(2)} >$$
$$= \begin{pmatrix} 17.0376 & 78.169 & -129.7 & -129.7 \\ 14.2435 & 87.4 & -118.675 & -118.675 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -164.193 \\ -135.706 \end{pmatrix}.$$

Consequently,

$$\begin{aligned} \mathbf{y}^{(1,2)} &:= < \nabla F(\mathbf{x}), \mathbf{x}^{(1,2)} > + < \nabla^2 F(\mathbf{x}), \mathbf{x}^{(1)}, \mathbf{x}^{(2)} > \\ &= \begin{pmatrix} 14.2435\\11.4495 \end{pmatrix} + \begin{pmatrix} -164.193\\-135.706 \end{pmatrix} = \begin{pmatrix} -149.95\\-124.257 \end{pmatrix} \end{aligned}$$

for $\mathbf{x}^{(1,2)} = (1,1,1,1)^T$.


```
#include < vector >
using namespace std;
#include "dco.hpp"
using namespace dco;
typedef gt1s<double> AD_BASE_MODE;
typedef AD_BASE_MODE::type AD_BASE_TYPE;
typedef gals<AD_BASE_TYPE> AD_MODE:
typedef AD_MODE::type AD_TYPE;
typedef AD_MODE::tape_t AD_TAPE_TYPE:
#include "../gt1s/f.hpp"
void driver(
    const vector <double>& xv,
    const vector < double > & xt2.
    vector<double>& xa1.
    vector < double > & xa1t2.
    vector < double > & vv,
    vector <double>& yt2,
    vector < double > & val.
    vector <double>& ya1t2
) {
  AD_MODE:: global_tape=AD_TAPE_TYPE:: create();
  const int n=xv.size(), m=vv.size();
```



```
vector \langle AD_TYPE \rangle \times (n), y(m);
for (int i=0; i < n; i++) {
  \times[i]=\timesv[i];
  AD_MODE:: global_tape -> register_variable (x[i]);
  derivative (value (x[i]))=xt2[i];
}
f(x,y);
for (int i=0; i < n; i++) {
  value(derivative(x[i]))=xa1[i];
  derivative (derivative (x[i]))=xa1t2[i];
for (int i=0; i < m; i++) {
  yv[i]=passive_value(y[i]);
  vt2[i]=derivative(value(v[i]));
  AD_MODE:: global_tape \rightarrow register_output_variable(v[i]);
  value(derivative(y[i]))=ya1[i];
  derivative (derivative (v[i]))=va1t2[i];
}
AD_MODE::global_tape ->interpret_adjoint();
for (int i=0; i < n; i++) {
  xa1t2[i]=derivative(derivative(x[i]));
  xa1[i]=value(derivative(x[i]));
for (int i=0; i < m; i++) {
  valt2[i]=derivative(derivative(v[i]));
  va1[i]=value(derivative(v[i]));
```



```
}
AD_TAPE_TYPE :: remove (AD_MODE :: global_tape);
}
```


The Jacobian of F at point $\mathbf{x} = (1, 1, 1, 1)^T$ is equal to

$$\nabla F(\mathbf{x}) = \begin{pmatrix} -2.79402 & -5.01252 & 11.025 & 11.025 \\ -2.79402 & -7.80654 & 11.025 & 11.025 \end{pmatrix}$$

yielding for $\textbf{x}_{(1)} = \textbf{x}^{(2)} = (1,1,1,1)^{\mathcal{T}}$ and $\textbf{y}_{(1)} = (1,1)^{\mathcal{T}}$

$$\mathbf{y}^{(2)} := \langle \nabla F(\mathbf{x}), \mathbf{x}^{(2)} \rangle = \begin{pmatrix} 14.2435 \\ 11.4495 \end{pmatrix}$$

and

$$\mathbf{x}_{(1)} := \mathbf{x}_{(1)} + \langle \mathbf{y}_{(1)}, \nabla F(\mathbf{x}) \rangle = \begin{pmatrix} -4.58804 \\ -11.8191 \\ 23.0501 \\ 23.0501 \end{pmatrix}$$

A serialization of the trailing dimension of the corresponding Hessian $\nabla^2 F(\textbf{x}) \in {\rm I\!R}^{2 \times 4 \times 4}$ is equal to

$$\nabla^2 F(\mathbf{x}) = \begin{pmatrix} 0 & -5.01252 & 11.025 & 11.025 \\ 0 & -7.80654 & 11.025 & 11.025 \end{pmatrix} \\ \begin{pmatrix} -5.01252 & -17.9851 & 50.5833 & 50.5833 \\ -7.80654 & -28.0102 & 61.6084 & 61.6084 \end{pmatrix} \\ \begin{pmatrix} 11.025 & 50.5833 & -101.167 & -90.1416 \\ 11.025 & 61.6084 & -101.167 & -90.1416 \\ (11.025 & 50.5833 & -90.1416 & -101.167 \\ 11.025 & 61.6084 & -90.1416 & -101.167 \end{pmatrix} \end{pmatrix}$$

The sum of the above four (2 \times 4)-matrices can be computed for $\textbf{x}^{(2)}=(1,1,1,1)^{T}$ as

$$< \nabla^2 F(\mathbf{x}), \mathbf{x}^{(2)} >= \begin{pmatrix} 17.0376 & 78.169 & -129.7 & -129.7 \\ 14.2435 & 87.4 & -118.675 & -118.675 \end{pmatrix}$$

The following product of its transpose with $\boldsymbol{y}_{(1)} = (1,1)^{\mathsf{T}}$ yields

$$< \mathbf{y}_{(1)}, \nabla^2 F(\mathbf{x}), \mathbf{x}^{(1)} > \equiv < \mathbf{y}_{(1)}, < \nabla^2 F(\mathbf{x}), \mathbf{x}^{(1)} >>$$

$$= \begin{pmatrix} 17.0376 & 14.2435 \\ 78.169 & 87.4 \\ -129.7 & -118.675 \\ -129.7 & -118.675 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 31.2811 \\ 165.569 \\ -248.375 \\ -248.375 \end{pmatrix}$$

Consequently,

$$\mathbf{x}_{(1)}^{(2)} := \mathbf{x}_{(1)}^{(2)} + \langle \mathbf{y}_{(1)}^{(2)}, \nabla F(\mathbf{x}) \rangle + \langle \mathbf{y}_{(1)}, \nabla^2 F(\mathbf{x}), \mathbf{x}^{(2)} \rangle$$
$$= \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} + \begin{pmatrix} -5.58804\\-12.8191\\22.0501\\22.0501 \end{pmatrix} + \begin{pmatrix} 31.2811\\165.569\\-248.375\\-248.375 \end{pmatrix} = \begin{pmatrix} 26.6931\\153.75\\-225.325\\-225.325 \end{pmatrix}$$

for $\mathbf{y}_{(1)}^{(2)} = (1, 1, 1, 1)^T$.