Computer Arithmetic

Uwe Naumann

Informatik 12: Software and Tools for Computational Engineering
RWTH Aachen University
Objective and Learning Outcomes

Computer Arithmetic
 Motivation
 Integer Numbers
 Floating-Point Numbers

Summary and Next Steps
Objective and Learning Outcomes

Computer Arithmetic
 Motivation
 Integer Numbers
 Floating-Point Numbers

Summary and Next Steps
Objective

- Introduction to fundamental numeric data types and computer arithmetic

Learning Outcomes

- You will understand
 - integer and floating-point number representation
 - limitations of computer arithmetic.

- You will be able to
 - convert decimal into binary numbers and vice versa
 - use auxiliary C++ function to_bin for automatic conversion into binary format.
Objective and Learning Outcomes

Computer Arithmetic
- Motivation
- Integer Numbers
- Floating-Point Numbers

Summary and Next Steps
Computer Arithmetic

Motivation

```cpp
#include <iostream>

int main() {
    for (int n=1; n<=10; n++) {
        float dt=1./n, t=0;
        for (int i=0; i<n; i++, t+=dt);
        for (int i=0; i<n; i++, t-=dt);
        std::cout << t << std::endl;
    }
    return 0;
}
```

0 0
0 -5.96046e-08
0 2.98023e-08
0 -8.9407e-08
0 2.98023e-08
0 0
4.47035e-08
1.49012e-08
Integer numbers are coded as **binary numbers**.

For example, 8 becomes 00000000 00000000 00000000 00001000.

Negative integer numbers are coded as the **two complements** of the corresponding positive binary numbers. Two complements are obtained by adding one to the **one complement**. The latter is built by switching individual digits 0 ↔ 1.

For example, −8 becomes 11111111 11111111 11111111 11111000.

Our C++ function `to_bin(T)` prints the binary representation of a value of data type `T`. It can be used to study the binary representation of integers.
Integer Numbers

C++ Standard Library Support: `<limits>`

The C++ Standard Library provides support for querying the characteristics of integers as well as of other numeric data types.

```cpp
#include<iostream>
#include<limits>
using namespace std;

int main() {
    cout << numeric_limits<int>::is_exact << endl; // 1
    cout << numeric_limits<int>::max() << endl; // 2147483647
    cout << numeric_limits<int>::min() << endl; // −2147483648
    cout << numeric_limits<int>::digits << endl; // 31
    cout << numeric_limits<int>::digits10 << endl; // 9
    return 0;
}
```

Binary representations of appropriate values (e.g., max) can be generated by `to_bin`, e.g.

```cpp
to_bin(numeric_limits<int>::max());
```
Real numbers \(x \in \mathbb{R} \) are represented by computers as floating-point numbers with base \(\beta \), accuracy \(t \) and exponent range \([L, U]\) as follows:

\[
x = \pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \ldots + \frac{d_{t-1}}{\beta^{t-1}} \right) \beta^e,
\]

where \(0 \leq d_i \leq \beta - 1 \) for \(i = 0, \ldots, t - 1 \) and \(L \leq e \leq U \).

The sequence of digits \(m = d_0 d_1 \ldots d_{t-1} \) over base \(\beta \) is called mantissa. The exponent is denoted as \(e \).

We consider normalized floating-point number systems, that is, \(d_0 = 0 \iff x = 0 \) implying \(1 \leq m < \beta \).
Decimal Floating-Point Numbers

Example

The normalized floating-point number system defined by $\beta = 10$, $t = 3$ and $[L, U] = [-2, 2]$ contains for example

$$\pm 0.0127 = \pm \left(1 + \frac{2}{10} + \frac{7}{10^2}\right) \cdot 10^{-2} = \pm 1.27 \cdot 10^{-2}$$

$$\pm 98.1 = \pm \left(9 + \frac{8}{10} + \frac{1}{10^2}\right) \cdot 10^1 = \pm 9.81 \cdot 10$$

$$\pm 1 = \pm \left(1 + \frac{0}{10} + \frac{0}{10^2}\right) \cdot 10^0 = \pm 1.00 \cdot 1$$

Minimum absolute value: $0.01 = 1.00 \cdot 10^{-2} \Rightarrow$ underflow

Maximum absolute value: $999 = 9.99 \cdot 10^2 \Rightarrow$ overflow
The normalized floating-point number system defined by $\beta = 2$, $t = 3$ and $[L, U] = [-1, 1]$ consists of the following 25 elements:

0

$\pm 1.00_2 \times 2^{-1} = \pm 0.5_{10}$, $\pm 1.01_2 \times 2^{-1} = \pm 0.625_{10}$

$\pm 1.10_2 \times 2^{-1} = \pm 0.75_{10}$, $\pm 1.11_2 \times 2^{-1} = \pm 0.875_{10}$

$\pm 1.00_2 \times 2^0 = \pm 1_{10}$, $\pm 1.01_2 \times 2^0 = \pm 1.25_{10}$

$\pm 1.10_2 \times 2^0 = \pm 1.5_{10}$, $\pm 1.11_2 \times 2^0 = \pm 1.75_{10}$

$\pm 1.00_2 \times 2^1 = \pm 2_{10}$, $\pm 1.01_2 \times 2^1 = \pm 2.5_{10}$

$\pm 1.10_2 \times 2^1 = \pm 3_{10}$, $\pm 1.11_2 \times 2^1 = \pm 3.5_{10}$
Binary Floating-Point Numbers

Example: $\beta = 2$, $t = 3$, $[L, U] = [-1, 1]$
Floating-Point Numbers

Rounding

Real values which cannot be represented exactly within the given floating-point number system are typically rounded to the nearest representable number.

Ties are broken by rounding to even mantissa (last bit of mantissa equal to zero).

Example: In \((\beta = 2, t = 3, [L, U] = [-1, 1])\) we get

\[1.126 \approx 1.25\]

and

\[1.125 \approx 1.\]
Floating-Point Numbers
Single Precision (C++: `float`)

... uses 32 bits:

- 23 bits for the mantissa (24th bit equal to 1 due to normalization)
- 8 bits for the exponent
- 1 sign bit

yielding 6 significant digits in decimal output format with minimum and maximum absolute values of 1.17549e-38 and 3.40282e+38, respectively.

The signed exponent is shifted into the 1...254 range (biased exponent). Its true value is obtained by subtracting $2^7 - 1 = 127$. This bias replaces the traditional two’s complement format for negative integers in order to simplify the comparison of two values of data type `float`.

See IEEE 754 standard for further details.
Floating-Point Numbers

\texttt{static_cast\langle float\rangle(1.0)}

Our C++ function \texttt{to_bin(T)} prints binary representation of value of data type \(T\).

```cpp
to\_bin(static\_cast<float>(1.0));
cout << pow(2,
    pow(2,0)+pow(2,1)+pow(2,2)+pow(2,3)+pow(2,4)
    +pow(2,5)+pow(2,6) // exponent + 2^7−1 (bias)
    −(pow(2,7)−1) // correction of bias
)
    *1 // mantissa
    << endl;
```

yields output

00111111 10000000 00000000 00000000 00000000

1

Note: floating-point constants are interpreted as of type \texttt{double} by default, e.g, \texttt{to_bin(1.0)} generates the output

00111111 11110000 00000000 00000000 00000000 00000000 00000000 00000000
Floating-Point Numbers

`static_cast<float>(2.1)`

to `bin(static_cast<float>(2.1));`

```plaintext
cout << pow(2,
    pow(2,7) // exponent + 2^7−1 (bias)
    -(pow(2,7)−1) // correction of bias
)
    *(1+pow(2,−5)+pow(2,−6)+pow(2,−9)+pow(2,−10)
    +pow(2,−13)+pow(2,−14)+pow(2,−17)+pow(2,−18)
    +pow(2,−21)+pow(2,−22)) // mantissa
    << endl;
```

yields output

```
01000000 00000110 01100110 01100110
2.1
```
Floating-Point Numbers

\texttt{static_cast<float>(0.0)}

to bin(\texttt{static_cast<float>(0.0)});
\texttt{cout << pow(2,0 // exponent + 2^7−1 (bias)}
\quad \texttt{−(pow(2,7)−1) // correction of bias}
\quad \texttt{∗1 // mantissa}
\texttt{<< endl;}

yields output

00000000 00000000 00000000 00000000
5.87747e-39

All floating-point numbers are distinct from zero due to normalization. The floating-point number with all bits vanished is explicitly defined as zero.

Further special numbers are infinity $\pm\text{inf}$ ($e = 2^8 − 1, m = 0$) and “not a number” \texttt{nan} ($e = 2^8 − 1, m > 0$).
Floating-Point Numbers

The C++ Standard Library provides support for querying the characteristics of `float` as well as of other numeric data types.

```cpp
#include <iostream>
#include <limits>
using namespace std;

int main() {
    cout << numeric_limits<float>::is_exact << endl; // 0
    cout << numeric_limits<float>::epsilon() << endl; // 1.19209e−07
    cout << numeric_limits<float>::max() << endl; // 3.40282e+38
    cout << numeric_limits<float>::min() << endl; // 1.17549e−38
    cout << numeric_limits<float>::lowest() << endl; // −3.40282e+38
    cout << numeric_limits<float>::digits << endl; // 24
    cout << numeric_limits<float>::min_exponent << endl; // −125
    cout << numeric_limits<float>::max_exponent << endl; // 128
    return 0;
}
```
... uses 64 bits:

- 52 bits for the mantissa (53rd bit equal to 1 due to normalization)
- 11 bits for the exponent
- 1 sign bit

Yielding 15 significant digits in decimal output format with minimum and maximum absolute values of 2.22507e-308 and 1.79769e+308, respectively.

The signed exponent is shifted into the 1...2046 range (biased exponent). Its true value is obtained by subtracting $2^{10} - 1 = 1023$.

See IEEE 754 standard for further details.
If two floating-point numbers x and y are identical except for the last k digits of their mantissas, then $z = x - y$ exhibits only k digits precision, which can have a negative impact on the accuracy of subsequent computations.

For example,

```cpp
double h=1e-13,a=1,b,c,d;
b=a+h; c=b-a; d=c/h;
std::cout << h << " " << a << " " << b << " " << c << " " << d << std::endl;
```

yields the output

```
1e-13 1 1 9.99201e-14 0.999201
```

d should be equal to 1.

Conclusion: Use floating-point arithmetic with care!
Outline

Objective and Learning Outcomes

Computer Arithmetic

Motivation
Integer Numbers
Floating-Point Numbers

Summary and Next Steps
Summary

▶ binary representation of integers and reals
▶ single and double precision floating-point arithmetic
▶ issues: rounding, cancelation, over-/underflow

Next Steps

▶ Investigate numeric data types using `to_bin`.
▶ Consult IEEE 754 standard.
▶ Continue the course to find out more ...