
Data Flow Reversal II

Call Tree Reversal

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University

Contents

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 2

Outline

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 3

Data Flow Reversal II
Objective and Learning Outcomes

Objective

I Introduction to Call Tree Reversal as a special case of Data Flow
Reversal

Learning Outcomes

I You will understand
I Formulation of Call Tree Reversal
I NP-completeness of Call Tree Reversal

I You will be able to
I Design call tree reversals
I Evaluate costs of call tree reversals

,

Data Flow Reversal II, info@stce.rwth-aachen.de 4

Outline

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 5

Data Flow Reversal
DAG Reversal

Given a DAG and two integers C ,MEM > 0, is there
a data flow reversal that uses at most MEM ≤ MEM
memory units and yields a computational cost of
COST ≤ C?

The computational cost (COST) is defined as the
sum of the number of elemental function evaluations
(OPS) to be performed in addition to a single eval-
uation of the program (requiring |Z ∪ Y |) and the
number of write accesses to persistent memory. -1 0

1

2

3

4 5

DAG Reversal is NP-complete.

I U. Naumann: DAG Reversal is NP-Complete. Journal of Discrete
Algorithms, Elsevier 2010.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 6

Outline

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 7

Data Flow Reversal
Call Tree

Persistently stored values are also referred to as checkpoints.

The vertex set V = X ∪ Z ∪ Y of a DAG G = (V ,E) decomposes into sources
X , intermediate vertices Z and sinks Y such that X ∩ Z ∩ Y = ∅.

A call tree T = (N,A) over a DAG G captures the interprocedural data flow of
the program represented by G . Nodes in N correspond to subprograms.
Subprogram calls are marked by arcs in A.

Subprograms correspond to subgraphs of G .

W.l.o.g., data flow reversal of subpro-
grams in store-all (alternatively, recompute-
all) mode is assumed to be feasible.

f

g h

,

Data Flow Reversal II, info@stce.rwth-aachen.de 8

Call Tree
Notation

Call trees are annotated with sizes of checkpoints and of local DAGs as follows:

f6 5

g4

50

3

30 20

h2

40

1

10

I f calls g before h

I sizes of argument checkpoints: f : 6, g : 4,
h : 2

I sizes of result checkpoints: f : 5, g : 3, h : 1

I sizes of DAGs f : 60, g : 50, h : 40

I sizes of local DAGs in f :
I before call of g : 30
I in between calls of g and h : 20
I after call of h : 10

For simplicity, we assume identical values for DAG sizes (memory occupied in
local store-all mode) and numbers of elemental functions evaluations performed
by (parts of) subprograms (e.g, number of vertices in DAGs), e.g, if
G = (V = X ∪ Z ∪ Y ,E) is the DAG of f , then |X | = 6, |Y | = 5 and
|Z | = 60− 5 = 55.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 9

Call Tree
Example 1

Call trees correspond to partitionings / colorings of the DAG vertices. The
mapping is not unique in either direction, e.g,

f2 2

g1

1

1

1 0

h2

1

1

2

1 float v[7];
2

3 void f() {
4 v[2]=v[0]+v[1];
5 g();
6 h();
7 v[5]=sin(v[4]);
8 v[6]=v[4]+v[1];
9 }

10

11 void g() {
12 v[3]=sin(v[2]);
13 }
14

15 void h() {
16 v[4]=v[0]+v[3];
17 }

0 1

2

3

4

5 6

,

Data Flow Reversal II, info@stce.rwth-aachen.de 10

Call Tree
Example 2

f2 1

g2 1

h2

2

1

0 2

0 1

1 float v[7];
2

3 void f() {
4 g();
5 v[6]=v[4]+v[1];
6 }
7

8 void g() {
9 h();

10 v[4]=v[0]+v[3];
11 v[5]=sin(v[4]);
12 }
13

14 void h() {
15 v[2]=v[0]+v[1];
16 v[3]=sin(v[2]);
17 }

0 1

2

3

4

5 6

,

Data Flow Reversal II, info@stce.rwth-aachen.de 11

Call Tree
Example 3

f2 2

g2 1

h2

1

1

1 0

1 2

1 float v[7];
2

3 void f() {
4 v[2]=v[0]+v[1];
5 g();
6 v[5]=sin(v[4]);
7 v[6]=v[4]+v[1];
8 }
9

10 void g() {
11 v[3]=sin(v[2]);
12 h();
13 }
14

15 void h() {
16 v[4]=v[0]+v[3];
17 }

0 1

2

3

4

5 6

,

Data Flow Reversal II, info@stce.rwth-aachen.de 12

Outline

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 13

Call Tree Reversal
Combinatorial Problem

A call tree reversal is a data flow reversal with checkpoints restricted to subsets
of arguments and results of subprograms.

Call Tree Reversal:

Given an annotated call tree over a DAG and two integers C ,MEM > 0. Is
there a call tree reversal that uses at most MEM memory and costs at most C?

Call Tree Reversal is NP-complete.

I U. Naumann: Call Tree Reversal is NP-Complete. In Bischof et. al.:
Advances in Automatic Differentiation, LNCSE 64, Springer, 2008.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 14

Call Tree Reversal
Notation

→
f

run primal

f
→

run augmented primal (record local DAG)

f
←

run adjoint (reverse local DAG)

↓ f
store argument checkpoint

↑ f
restore argument checkpoint

f ↓
store result checkpoint

f ↑
restore result checkpoint ... and combinations thereof.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 15

Call Tree Reversal is NP-Complete
Proof

A result checkpointing of a call tree T = (N,A) over a DAG G = (V ,E) is a
data flow reversal which recovers all values (represented by V = X ∪ Z ∪ Y) in
reverse order by storing only subsets of results of subprograms (represented by
N) in addition to all values represented by X and by recomputing the other
values from the stored ones.

Result Checkpointing:

Given a call tree T over a DAG G = (V = X ∪ Z ∪ Y ,E) and integers
MEM,C > 0. Is there a result checkpointing for T that uses at most MEM
persistent memory units while costing at most MEM + C)?

,

Data Flow Reversal II, info@stce.rwth-aachen.de 16

Result Checkpointing is NP-Complete
Proof

Reduction: DAG G = (V = X ∪ Z ∪ Y ,E) → Call Tree T = (N,A)

We define a bijection between DAG Reversal and Result
Checkpointing (Result Checkpointing inherits the computational
complexity of DAG Reversal) as follows:

I Vertices in Z ∪ Y represent calls to multivariate scalar functions φi ,
i = |X |, . . . , |Z ∪ Y | − 1, operating on a global memory space v ∈ IRµ,
µ ≤ |V | (elemental subprograms).

I |Zi | = 0 for Gi = (Vi = Xi ∪ Zi ∪ Yi ,Ei) being the DAG of φi .

I Sequences of subprogram calls need to be reversed in recompute-all mode
in order to not exceed the persistent memory bound MEM.

Verification:

I A given solution to Result Checkpointing is trivially verified in
polynomial time by counting the numbers of evaluations of elemental
subprograms and of write accesses to memory.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 17

Call Tree Reversal is NP-Complete
Proof

Example for reduction from DAG Reversal to Result Checkpointing
(MEM = 4):

1 float v[3];
2

3 void f1() { v[2]=v[0]+v[1] }
4

5 void f2() { v[2]=sin(v[2]) }
6

7 void f3() { v[2]=v[0]+v[2] }
8

9 void f4() { v[0]=sin(v[2]) }
10

11 void f5() { v[1]=v[2]+v[1] }
-1 0

1

2

3

4 5

Call Tree Reversal comprises Result Checkpointing. Hence, it
cannot be easier.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 18

Call Reversal
Heuristic

The following perspective on Call Tree Reversal was designed with the
objective to restrict the search space such that results can be implemented in a
rather straight forward fashion.

We

1. store all arguments of any subprogram (or none)

2. store all results of any subprogram only to avoid recomputation.

Hence, the reversal problem for a call tree T = (N,A) asks for all arcs whether
to store the arguments of their target nodes (1) or not (0), i.e,

R : E → {0, 1} .

Moreover, nodes to become subject to result checkpointing need to be specified.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 19

Call Reversal
Early vs. Late Recording

Early Recording costs (7,7) Late Recording costs (4,12)

f1 1

g1

4

1

3

f̄

f
→

g
→

+4

+3

f
←

g
←

-4

-3

f̄

f
→

↓ →g+1

+4

+3

f
←

↑ g
↔-1

±4

-3

Color coding accesses to memory (black) and contributions to COST ; mixed
colors mark contributions to both, e.g, +4 marks increase in memory
requirement by four units (write access). Missing labels are equal to zero.

Note: COST = OPS+ write accesses to memory −|V |.

,

Data Flow Reversal II, info@stce.rwth-aachen.de 20

Call Tree Reversal
Global Early Recording

f1 1

g1 1

h1 1

1000

1010

100100

f̄

f
→

g
→

h
→

+1000

f
←

g
←

h
←

−1000

+10 +10

+100 +100

−10 −10

−100−100

R = {((f , g), 0) , ((g , h), 0)} costs (1220, 1220)

,

Data Flow Reversal II, info@stce.rwth-aachen.de 21

Call Tree Reversal
Global Late Recording

f1 1

g1 1

h1 1

1000

1010

100100

f̄

f
→

↓ →g+1

→
h

+1000

f
←

↑ g
→-1

↓
→
h

+1000

+1

g
←

↑ h
↔

± 1000

-1

+10 +10

+100 +100

−10 −10

+100 +100 −100−100

R = {((f , g), 1) , ((g , h), 1)} costs (1110,3422)

,

Data Flow Reversal II, info@stce.rwth-aachen.de 22

Call Tree Reversal
Result Checkpointing

f1 1

g1 1

h1 1

1000

1010

100100

f̄

f
→

↓ →g+1

→
h ↓

+1000

+1

f
←

↑ g
→-1

h ↑ -1

g
←

↑ h
↔

± 1000

-1

+10 +10

+100 +100

−10 −10

+100 +100 −100−100

R = {((f , g), 1) , ((g , h), 1)} ∪ {h} costs (1110,2422)

,

Data Flow Reversal II, info@stce.rwth-aachen.de 23

Call Tree Reversal
Greedy Heuristics

Starting from R = {∀a ∈ A : 0} switch
call reversal modes from 0 to 1 in increas-
ing / decreasing orders of local DAG sizes.

Starting from R = {∀a ∈ A : 1} switch
call reversal modes from 1 to 0 in increas-
ing / decreasing orders of local DAG sizes.

Exercises: Consider the remaining two op-
tions for the above example and ...

f5 1

g5 1

h10

20

1

10

i5

10

1

10 10

15 5

j5

30

1

5

,

Data Flow Reversal II, info@stce.rwth-aachen.de 24

Outline

Objective and Learning Outcomes

DAG Reversal

Call Tree

Call Tree Reversal
NP Completeness
Implementation

Summary and Next Steps

,

Data Flow Reversal II, info@stce.rwth-aachen.de 25

Data Flow Reversal II
Summary and Next Steps

Summary

I Introduction to Call Tree Reversal as a special case of Data Flow
Reversal

I NP-completeness of Call Tree Reversal

I Design call tree reversals and their costs

Next Steps

I Practice design of call tree reversals and evaluation of their costs.

I Continue the course to find out more ...

,

Data Flow Reversal II, info@stce.rwth-aachen.de 26

	Objective and Learning Outcomes
	DAG Reversal
	Call Tree
	Call Tree Reversal
	NP Completeness
	Implementation

	Summary and Next Steps

