Introduction to Algorithmic Differentiation

AD by Hand (Case Study)

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)
RWTH Aachen
Contents

Recall
 Sigmoid
 Newton

Newton on Sigmoid
 Primal
 Tangent
 Adjoint
Outline

Recall
 Sigmoid
 Newton

Newton on Sigmoid
 Primal
 Tangent
 Adjoint
Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x, p) = \begin{cases} f_1(x) & x < p \\ f_2(x) & x \geq p \end{cases}$$

with differentiable univariate scalar f_1 and f_2.

Depending on the choice of f_1 and f_2 the function f can be nondifferentiable or even discontinuous at $x = p$.

Examples:

- $f_1 = \cos$, $f_2 = \sin \Rightarrow$ discontinuous at $x = p = 1$
- $f_1 = \cos$, $f_2 = \sin \Rightarrow$ nondifferentiable at $x = p = \frac{\pi}{4}$
- $f_1 = 1$, $f_2 = \cos \Rightarrow$ differentiable at $x = p = 0$
Sigmoidal smoothing replaces f with $\tilde{f} : \mathbb{R}^3 \to \mathbb{R}$ defined as

$$\tilde{f}(x, p, w) = (1 - \sigma(x, p, w)) \cdot f_1(x) + \sigma(x, p, w) \cdot f_2(x),$$

where

$$\sigma(x, p, w) = \frac{1}{1 + e^{-\frac{x - p}{w}}}.\tag{1}$$

Example: $f_1 = \cos$, $f_2 = \sin$ at $x = p = 1$

- $w = 0.5$
- $w = 0.1$
- $w = 0.05$

Introduction to AD, info@stce.rwth-aachen.de
Sigmoid Implementation

```cpp
template<typename T>
void f1(const T &x, T &y);

template<typename T>
void f2(const T &x, T &y);

template<typename T, typename PT>
void sigmoid(T &x, const PT &p, const PT &w) {
    T a; f1(x,a);
    T b; f2(x,b);
    x=1/(1+exp(-(x-p)/w));
    x=a*(1-x)+b*x;
}
```
Recall
Newton’s Method

Consider a nonlinear equation \(y = f(x) = 0 \) at some (starting) point \(x \).

Building on the assumption that \(f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x \) the root finding problem for \(f \) can be replaced locally by the root finding problem for the linearization

\[
\bar{f}(\Delta x) = f(x) + f'(x) \cdot \Delta x.
\]

The right-hand side is a straight line intersecting the \(y \)-axis in \((\Delta x = 0, \bar{f}(\Delta x) = f(x))\).

Solution of

\[
\bar{f}(\Delta x) = f(x) + f'(x) \cdot \Delta x = 0
\]

for \(\Delta x \) yields

\[
\Delta x = -\frac{f(x)}{f'(x)}
\]

implying \(f(x + \Delta x) \approx 0 \).
Newton’s Method

Iteration

If the new iterate is not close enough to the root of the nonlinear function, i.e, \(|f(x + \Delta x)| > \epsilon\) for some measure of accuracy of the numerical approximation \(\epsilon > 0\), then it becomes the starting point for the next iteration yielding the recurrence

\[
x = x - \frac{f(x)}{f'(x)}
\]

Convergence of this method is not guaranteed in general. Damping of the magnitude of the next step may help.

\[
x = x - \alpha \cdot \frac{f(x)}{f'(x)} \quad \text{for } 0 < \alpha \leq 1.
\]

The damping parameter \(\alpha\) is often determined by line search (e.g, recursive bisection yielding \(\alpha = 1, 0.5, 0.25, \ldots\)) such that decrease in absolute function value is ensured.
template<typename T, typename PT>
T f(T &x, const PT &p);

template<typename T, typename PT>
T dfdx(T &x, const PT &p);

template<typename T, typename PT>
void newton(T &x, const T &p, const PT &eps, const unsigned int maxit) {
 unsigned int it=0;
 T y=f(x,p);
 do {
 x-=y/dfdx(x,p);
 y=f(x,p);
 if (++it==maxit) break;
 } while(fabs(y)>eps);
}
Outline

Recall
 Sigmoid
 Newton

Newton on Sigmoid
 Primal
 Tangent
 Adjoint
Newton on Sigmoid

Primal

\[f_1(x) = \sin(x); \quad f_2(x) = \cos(x); \quad p = 0; \quad w = 0.1 \]
```cpp
template<typename T, typename PT>
void newton(T &x, const T &p, const T &w, const PT &eps, const unsigned int maxit) {
    unsigned int it=0;
    T y=x, dy;
    dsigmoid_dx(y,p,w,dy);
    do {
        x−=y/dy;
        y=x;
        dsigmoid_dx(y,p,w,dy);
        if (++it==maxit) break;
    } while(fabs(y)>eps);
}
```
template<typename T, typename PT>
void sigmoid_t(T &x, T &x_t, const PT &p, const PT &w) {
 T a, a_t;
 f1_t(x,x_t,a,a_t);
 T b, b_t;
 f2_t(x,x_t,b,b_t);
 T c_t=−exp(−(x−p)/w)/w*x_t;
 T c=1+exp(−(x−p)/w);
 x_t=−c_t/pow(c,2);
 x=1/c;
 x_t=(1−x)*a_t+(b−a)*x_t+x*b_t;
 x=a*(1−x)+b*x;
}

template<typename T, typename PT>
void dsigmoid_dx(T &x, const PT &p, const PT &w, T &dx) {
 dx=1; sigmoid_t(x,dx,p,w);
}
template<typename T>
void f1_t(const T &x, const T &x_t, T &y, T &y_t) {
 y_t = cos(x) * x_t;
 y = sin(x);
}

template<typename T>
void f2_t(const T &x, const T &x_t, T &y, T &y_t) {
 y_t = -sin(x) * x_t;
 y = cos(x);
}
Newton on Sigmoid Tangent

Code Inspection / Discussion / Experiments
Newton on Sigmoid

Adjoint

Code Inspection / Discussion / Experiments
Recall

Sigmoid
Newton

Newton on Sigmoid
Primal
Tangent
Adjoint