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Motivation
Sparsity and Structure in Numerical Simulations

Scientific computing uses mathematical modelling to
numerically simulate / predict / optimize reality, e.g,
automotive engineering, geophysics, ...

Numerical simulations are implemented as com-
puter programs.
Sparsity is induced by missing data dependences,
e.g, today’s temperature in Hong Kong is prob-
ably independent of yesterday’s temperature in
Aachen, ...
Numerical programs exhibit structure, e.g, iter-
ation, recursion, ...

Efficiency and robustness requires solution of various combinatrial problems
(ordering, coloring, elimination, ...) on sparse matrices and graphs.
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Motivation
Newton’s Method

Key ingredients of scientific computing are the numerical approximation of
solutions of

I systems of nonlinear equations

F (x) = 0, F : IRn → IRn

for given implementations of the residual y = F (x) and

I convex unconstrained nonlinear optimization problems

argminxf (x), f : IRn → IR

for given implementations of the objective y = f (x)

by Newton’s method. The method uses differentiation and linear algebra ⇒
plenty of structure and sparsity to exploit.
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Motivation
Ingredients of Newton’s Method

The content of this course inspired by the ingredients of Newton’s method,
namely

I solution of systems of linear equations involving

I sparse matrix-vector products
I sparse matrix chain products
I sparse direct linear solvers

I algorithmic differentiation involving

I accumulation of sparse Jacobians and Hessians
I data-flow reversal

The discussion of these topics will be based on introductions to essential
background of Newton’s method and of algorithmic differentiation.

,
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Motivation
SuiteSparse Matrix Collection

We use generic residuals F (x)[= 0] and objectives [minx]f (x) replicating given
sparsity patterns, e.g, provided by the SuiteSparse Matrix Collection; see
sparse.tamu.edu.

... not a virus!

A dense matrix has n2 nonzero entries (obviously, ...).

A matrix is sparse if the number of nonzero entries is O(n).

,
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Motivation
Extreme Example

Consider linear system A · x = b with regular system matrix A ∈ IRn×n and
solved as

L · U · x︸︷︷︸
:=z

= b

by

I A = L · U decomposition at cost of O(n3)

I forward substitution for L · z = b at cost of O(n2)

I backward substitution for U · x = z at cost of O(n2)

Obviously, treatment of a lower triangular A as dense, e.g,(
1 0
2 3

)
=

(
1 0
2 1

)
·
(

1 0
0 3

)
is suboptimal.
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Motivation
Another Extreme Example

Householder Reflection of a ∈ IRn :

v = a + sign(a0) · ‖a‖ · e0

H = I − 2 · v · vT

vT · v
a = H · a

better at cost of O(n) (instead of O(n2))

v = a + sign(a0) · ‖a‖ · e0

a = a− 2 · vT · a
vT · v

· v

,
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Motivation
Further Examples

I associativity of matrix multiplication((
1 2
3 4

)
·
(

1 2
3 4

))
·
(

1
3

)
=

(
1 2
3 4

)
·
((

1 2
3 4

)
·
(

1
3

))
I distributivity of real arithmetic

a1 · b1 · c · d + a2 · b2 · c · d = (a1 · b1 + a2 · b2) · c · d

I structural orthogonality of vectors((
1
0

)
+

(
0
2

))
· 3

carries same information as((
1
0

)
· 3,
(

0
2

)
· 3
)

in less storage (and potentially at lower computational cost).
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Admin
Further Details on RWTH Moodle

I The lecture covers general story
including theory and algorithms
(videos + Q&A via Zoom).

I The tutorial (via Zoom) supports
the lecture by discussing both
pen&paper as well as programming
exercises → bonus credits

I Learning material consists of
videos, slides, code, reference
solutions for tutorial exercises,
pointers into literature, e.g, ...

I Registration (RWTH online) “buys” you access to the RWTH Moodle
page of the course.
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Bonus Credits
for Tutorial Exercises

You can earn up to two bonus credits for submission of reasonable solutions to

I 60% (single credit)

I 80% (two credits)

of the tutorial exercises.

A single credit improves your final grade (≤ 4.0) by one level (e.g. from 1.7 to
1.3).
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Summary
... of this lecture

I Scientific computing is an essential element of mankind’s toolbox for
understanding the world.

I Combinatorial problems occur in the context of many scientific computing
methods.

I For example, they can be posed as ordering, coloring or elimination
problems on sparse matrices and/or graphs.

I Knowledge of algorithms for the solution of these problems enables
efficient and robust implementation of numerical simulation methods.

I You should attend this course ... ;-)
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