Modern Family

Convex Minimization in \mathbb{R}^n

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)
RWTH Aachen University
Contents

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
Objective

► Introduction to sample code approaching the Modern Family example as a general convex minimization problem.

Learning Outcomes

► You will understand
 ► the formulation of the Modern Family example as a general convex minimization problem
 ► its solution using the general-purpose optimization methods steepest descent and Newton’s method.

► You will be able to
 ► run the sample code
 ► compare the results
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
We state the Modern Family example for model

\[y = f(p, x) : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R} \]

as minimization of the error function

\[E(p, X, y) = \sum_{i=0}^{m-1} (f(p, x_i^T) - y_i)^2 \]

Linear (in \(p \))

\[y = p^T \cdot x \]

and nonlinear

\[y = (p^T \cdot x)^2 \]

models are considered.
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
Convex Minimization in \mathbb{R}^n

Optimality Conditions

Necessary

$$\frac{dE}{dp}(p, X, y) = 2 \cdot \sum_{i=0}^{m-1} \left((f(p, x_i^T) - y_i) \cdot \frac{df}{dp}(p, x_i^T) \right) \rightarrow 0$$

Sufficient

$$v^T \cdot \frac{d^2E}{dp^2}(p, X, y) \cdot v > 0 \quad \forall v \neq 0 \in \mathbb{R}^n$$

where

$$\frac{d^2E}{dp^2} = 2 \cdot \sum_{i=0}^{m-1} \left(\frac{df}{dp}(p, x_i^T)^T \cdot \frac{df}{dp}(p, x_i^T) + \frac{d^2f}{dp^2}(p, x_i^T) \cdot (f(p, x_i^T) - y_i) \right)$$
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
For \(y = f(p, x) = p^T \cdot x = x^T \cdot p \)

\[
E(p, X, y) = \sum_{i=0}^{m-1} (f(p, x_i^T) - y_i)^2 = \sum_{i=0}^{m-1} (x_i \cdot p - y_i)^2
\]

and hence

\[
\frac{dE}{dp}(p, X, y) = 2 \cdot \sum_{i=0}^{m-1} (x_i \cdot p - y_i) \cdot x_i \in \mathbb{R}^{1 \times n}
\]

and

\[
\frac{d^2E}{dp^2}(p, X, y) = 2 \cdot \sum_{i=0}^{m-1} x_i^T \cdot x_i \in \mathbb{R}^{n \times n}.
\]
We present implementations for the solution of the convex unconstrained minimization problem

$$\min_{p \in \mathbb{R}^n} E(p, X, y)$$

using

- steepest descent
- Newton’s method.

See source code.
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
For \(y = f(p, x) = (p^T \cdot x)^2 = (x^T \cdot p)^2 \)

\[
E(p, X, y) = \sum_{i=0}^{m-1} (f(p, x_i^T) - y_i)^2 = \sum_{i=0}^{m-1} (x_i \cdot p - y_i)^2
\]

and hence

\[
\frac{dE}{dp}(p, X, y) = 4 \cdot \sum_{i=0}^{m-1} ((x_i \cdot p)^3 - y_i \cdot x_i \cdot p) \cdot x_i
\]

and

\[
\frac{d^2E}{dp^2}(p, X, y) = 4 \cdot \sum_{i=0}^{m-1} (3 \cdot (x_i \cdot p)^2 - y_i) \cdot x_i^T \cdot x_i.
\]
We present implementations for the solution of the convex unconstrained minimization problem

$$\min_{p \in \mathbb{R}^n} E(p, X, y)$$

using

- steepest descent
- Newton’s method with differentiation performed
 - symbolically
 - approximately (finite differences)
 - algorithmically (dco/c++)

See source code.
Outline

Objective and Learning Outcomes

Least-Squares Objective

Optimality Conditions

Linear Model
 Optimality Conditions
 Implementation

Nonlinear Model
 Optimality Conditions
 Implementation

Summary and Next Steps
Summary

- Introduction to sample code approaching the Modern Family example as a general convex minimization problem.
- Solution of Modern Family problem using steepest descent and Newton’s method.

Next Steps

- Run the sample code.
- Compare the results.
- Continue the course to find out more …