Numerical Software II

Sparse Linear Algebra with Eigen

Viktor Mosenkis

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University
Contents

Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplaces’s Equation: Derivation
 Laplace’s Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplaces’s Equation: Derivation
 Laplace’s Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
Objective

▶ Introduction to sparse linear algebra,
▶ Use Eigen for sparse linear algebra.

Learning Outcomes

▶ You will understand
 ▶ different formats (CRS, CCS) for sparse matrices,
 ▶ their advantages and disadvantages,
 ▶ sparse linear algebra with Eigen.

▶ You will be able to
 ▶ solve sparse system of linear equations with Eigen.
 ▶ solve sparse linear regression problem with Eigen.
Outline

Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplace's Equation: Derivation
 Laplace's Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
Motivation Sparse Linear Algebra

Memory requirements for dense matrices

Memory size for $n \times n$ matrix with double entries stored as 2D-array

- $n = 10^2$: memory used $10^4 \cdot \text{sizeof(double)} = 80\text{KB}$
- $n = 10^3$: memory used $10^6 \cdot \text{sizeof(double)} = 8000\text{KB} = 8\text{MB}$
- $n = 10^4$: memory used $10^8 \cdot \text{sizeof(double)} = 800\text{MB}$
- $n = 10^5$: memory used $10^{10} \cdot \text{sizeof(double)} = 8000\text{MB} = 8\text{GB}$
- $n = 10^6$: memory used $10^{12} \cdot \text{sizeof(double)} = 800\text{GB}$

How can we perform computations with big matrices?
In scientific computing a **sparse** matrix is a matrix in which most of the elements are zero. A matrix where most of the elements are nonzero, considered **dense**.

Sparsity is the proportion of the number of zero-valued elements in the matrix to the total number of elements. The matrix is considered to be **sparse** if its **sparsity** is greater than 0.5.

In scientific application large sparse matrices typically appear when solving partial differential equations.

For sparse matrices we could simply store only the nonzero elements!
Solve the discretized form of Laplace’s equation,
\[
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 ,
\]
for \(u(x, y) \) defined within the domain of \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \) given the boundary conditions

- \(u(x, 0) = 1 \)
- \(u(x, 1) = 2 \)
- \(u(0, y) = 1 \)
- \(u(1, y) = 2 \)
Laplace’s Equation
Derivation

We now approximate the second partial derivatives in the PDE by 2nd order centered finite difference scheme,

\[
\frac{\partial^2 u}{\partial x^2} \approx \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{(\Delta x)^2}
\]

\[
\frac{\partial^2 u}{\partial y^2} \approx \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{(\Delta y)^2}
\]
Laplace’s Equation

Derivation

Inserting the equations from the previous slide into the Laplace’s equation at the grid point \((i, j)\), yield

\[
\frac{u_{i-1,j} - 2u_{i,j} + u_{i+1,j}}{(\Delta x)^2} + \frac{u_{i,j-1} - 2u_{i,j} + u_{i,j+1}}{(\Delta y)^2} = 0
\]

For \(\Delta x = \Delta y\) we obtain

\[-4u_{i,j} + u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} = 0\]

Hence the partial derivatives \(\left(\frac{\partial^2 u}{\partial x^2}\right) + \left(\frac{\partial^2 u}{\partial y^2}\right)\), at the grid point \((i, j)\) can be evaluated using the discrete values of \(u\) at \((i, j)\) itself and the values at its four neighboring points. Write the equation for all interior points \(u_{i,j}\) yield an equation system with at most five entries in each row. Hence the matrix is sparse.
Let’s consider a small example of the discretization with just few grid points

with \(u_{i,j} = u(i\Delta x, j\Delta y) \) and \(\Delta x = \Delta y = 1/3 \). The values of the variables \(u_{i,j} \) in blue are given by the boundary conditions.
Laplace’s Equation

Derivation

We can now write the equations for the four interior points $u_{i,j}$

\[
\begin{align*}
-4u_{1,1} + u_{1,2} + u_{2,1} + u_{0,1} + u_{1,0} &= 0 \\
-u_{1,1} -4u_{1,2} + u_{2,2} + u_{2,1} + u_{0,2} + u_{1,3} &= 0 \\
-u_{1,2} -4u_{2,2} + u_{2,1} + u_{2,3} + u_{3,2} &= 0 \\
u_{1,1} + u_{2,2} -4u_{2,1} + u_{2,0} + u_{3,1} &= 0
\end{align*}
\]

The $u_{i,j}$ marked with blue are given by the boundary conditions. Bringing these values to the right hand side yield the following equation system

\[
\begin{pmatrix}
-4 & 1 & 0 & 1 \\
1 & -4 & 1 & 0 \\
0 & 1 & -4 & 1 \\
1 & 0 & 1 & -4
\end{pmatrix}
\begin{pmatrix}
u_{1,1} \\
u_{1,2} \\
u_{2,2} \\
u_{2,1}
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
-3 \\
-4 \\
-3
\end{pmatrix}
\]
Outline

Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplace’s Equation: Derivation
 Laplace’s Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
The Compressed Row Storage (CRS) and Compressed Column Storage (CCS) are general storage formats. They make absolutely no assumptions about the sparsity structure of the matrix and they don’t store any unnecessary elements. The matrix is represented with the following three vectors:

- **Value** vector (floating-point, size - number of nonzeros \((nnz)\))
- **InnerIndices** vector (integer, size - \(nnz\))
- **OuterStarts** vector (integer, size - number of rows +1 (CRS) number columns +1 (CCS))

CRS/CCS format puts the subsequent nonzeros of the matrix rows/columns in contiguous memory locations. The **Value** vector stores the nonzero elements of the matrix \(A\). The **InnerIndices** vector stores the column/row indexes of the elements of the **Value** vector. That is if \(Value(k) = a_{ij}\) then \(InnerIndices(k) = j/InnerIndices(k) = i\). The **OuterStarts** vectors stores the locations in **Value** that start a row/column. By convention the last entry of **OuterStarts** vectors is set to \(nnz\).
CRS and CCS Formats

Example

Given the matrix

\[
A = \begin{pmatrix}
0 & 3 & 0 & 0 & 0 \\
22 & 0 & 0 & 0 & 17 \\
7 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 14 & 0 & 8 \\
\end{pmatrix}
\]

Then

- Its CRS representation:

 Values: 3 22 17 7 5 1 14 8
 InnerIndices: 1 0 4 0 1 3 2 4
 OuterStarts: 0 1 3 6 6 8

- Its CCS representation:

 Values: 22 7 3 5 14 1 17 8
 InnerIndices: 1 2 0 2 4 2 1 4
 OuterStarts: 0 2 4 5 6 8
Random access is expensive. We first need to access the \texttt{OuterStarts} vector to find the beginning of the desired row/column and then search for the index of the desired value in the \texttt{InnerIndices} vector. So in worst case we will have to check all indices in the desired row/column. Leading to worst case complexity of $O(\text{row size})/ O(\text{column size})$ and not $O(1)$ as in dense case.

Inserting a new nonzero element is expensive as we must reallocate the \texttt{Values} and \texttt{InnerIndices} vector.

Deleting an element is expensive if we want to free the memory. E.g. once it became zero as a result of some operation.
Fill-in of a matrix are those entries that change from an initial zero to a nonzero value during execution of an algorithm.

\[
\begin{pmatrix}
* & * & * \\
* & * & 0 \\
0 & * & 0
\end{pmatrix}
\xrightarrow{LU}
\begin{pmatrix}
* & * & * \\
* & * & * \\
0 & * & *
\end{pmatrix}
\quad \text{better}

\begin{pmatrix}
* & * & 0 \\
0 & * & 0 \\
* & * & *
\end{pmatrix}
\xrightarrow{LU}
\begin{pmatrix}
* & * & 0 \\
0 & * & 0 \\
* & * & *
\end{pmatrix}
\]

Mimimizing fill-in by switching rows and columns in the matrix is important for several reasons:

- reduce memory requirements
- avoid unnecessary reallocations of memory
- reduce the number of performed operations
Outline

Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplace's Equation: Derivation
 Laplace's Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
Eigen’s main sparse matrix representation is given in the class `SparseMatrix`. It implements a variant of CRS/CCS scheme and consists of four compact arrays.

- **Value** vector (floating-point, size - number of nonzeros \((nnz)\))
- **InnerIndices** vector (integer, size - \(nnz\))
- **OuterStarts** vector (integer, size - number of rows +1 (CRS) number columns +1 (CCS))
- **InnerNNNZs** vector (integer, number of rows (CRS) number columns (CCS))

The vectors **Value**, **InnerIndices**, **OuterStarts** serve exactly the same purpose as in CRS/CCS formats, with the only difference, that **Value** and **InnerIndices** contain spare entries to quickly insert new elements. That is why the vector **InnerNNNZs** is required to identify the actual number \(nnz\) in row/column.
Eigen implementation

The SparseMatrix class: Example

Given the matrix

\[
A = \begin{pmatrix}
0 & 3 & 0 & 0 & 0 \\
22 & 0 & 0 & 0 & 17 \\
7 & 5 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 14 & 0 & 8
\end{pmatrix}
\]

Possible Eigen CCS representation:

- **Values:** 22 7 3 5 14 1 17 8
- **InnerIndices:** 1 2 0 2 4 2 1 4
- **OuterStarts:** 0 3 5 8 10 12
- **InnerNNZs:** 2 2 1 1 2
The SparseMatrix class
Filling a sparse matrix

Due to the special storage scheme of SparseMatrix adding a new nonzero entry to the matrix has the cost of $O(nnz)$. The simplest way to create a sparse matrix while guaranteeing good performance is to build a list of triplets and then convert this list to SparseMatrix.

```cpp
typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
tripletList.reserve(estimation_of_entries);
for(...) {
    // ...
    tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
```
The **SparseMatrix** class

Conversion

Convert Dense matrix to Sparse

```cpp
1   Eigen::SparseMatrix<\texttt{double}> A;
2   Eigen::Matrix<\texttt{double},\texttt{Eigen::Dynamic},\texttt{Eigen::Dynamic}> B;
3   ...
4   A = B.sparseView();
```

Convert Sparse matrix to Dense

```cpp
1   Eigen::SparseMatrix<\texttt{double}> A;
2   Eigen::Matrix<\texttt{double},\texttt{Eigen::Dynamic},\texttt{Eigen::Dynamic}> B;
3   ...
4   B = A;
```

Any **SparseMatrix** can be turned into proper CRS/CCS format by calling `SparseMatrix::makeCompressed()`. In this case the **InnerNNZs** vector is redundant and thus this call frees this buffer.
void solve_LES(const SparseMatrix<double> &A, const Matrix<double,Dynamic,1> &b, Matrix<double,Dynamic,1> &x) {
 SparseLU<SparseMatrix<double>, COLAMDOOrdering<int> > solver;
 solver.compute(A);
 if (solver.info() != Success) std::cout << "Decomposition failed " << std::endl;
 x = solver.solve(b);
 if (solver.info() != Success) std::cout << "solver failed " << std::endl;
}

int main(int argc, char* argv[]) {
 assert(argc==2); int n=std::stoi(argv[1]);
 std::vector<Triplet<double>> coefficients;
 Eigen::Matrix<double,Dynamic,1> b(n), x(n);

 buildProblem(coefficients, b, n);
 Eigen::SparseMatrix<double> A(n,n);
 A.setFromTriplets(coefficients.begin(), coefficients.end());
 solve_LES(A,b,x);
}
void Regression_QR(const SparseMatrix<double> &A,
Matrix<double,Dynamic,1> &p,
const Matrix<double,Dynamic,1> &x)
{
 SparseQR<SparseMatrix<double>, COLAMDOrdering<int> > solver;
 solver.compute(A);
 if (solver.info() != Success) std::cout << "Decomposition failed " << std::endl;
 p = solver.solve(x);
 if (solver.info() != Success) std::cout << "solver failed " << std::endl;
}

int main(int argc, char* argv[]) {
 assert(argc==3); int m=std::stoi(argv[1]); int n=std::stoi(argv[2]);
 std::vector<Triplet<double>> coefficients;
 Eigen::Matrix<double,Dynamic,1> p(n), y(n);
 buildProblem(coefficients, y, m, n);
 Eigen::SparseMatrix<double> A(m,n);
 A.setFromTriplets(coefficients.begin(), coefficients.end());
 Regression_QR(A,p,y);
 std::cout << "||A*p−y|| = " << (A*p−y).squaredNorm() << std::endl;
 std::cout << "||A^T*A*p−A^T*y||="
 << (A.transpose()*A*p−A.transpose()*y).norm() << std::endl;
}
Outline

Objectives and Learning Outcomes

Motivation Sparse Linear Algebra
 Laplace’s Equation: Derivation
 Laplace’s Equation: Example

CRS and CCS Formats
 Idea
 Problems to consider

Eigen Implementation of Sparse Matrices
 SparseMatrix class
 Solving Sparse Systems Linear Equations
 Solving Sparse Linear Regression Problem

Summary and Next Steps
Summary

▶ Use sparse linear algebra with Eigen
 ▶ CRS and CCS formats
 ▶ Solve sparse systems of linear equations with Eigen
 ▶ Solve sparse linear regression problem with Eigen

Next Steps

▶ Play with sample code.
▶ Compare performance of dense and sparse solvers for linear equation systems and linear regression implementations. Try wrappers to external solver mentioned in the Eigen documentation and compare the performance with built-in ones.
▶ Continue the course to find out more ...