Software Lab Computational Engineering Science

Tutorial Exercises

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University
Contents

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization
Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Convex Unconstrained Optimization
Tutorial Exercise 1
Iterative Linear Solver

- Extend LINEAR_SYSTEM with an iterative (e.g., conjugate gradients) solver and use it in NONLINEAR_SYSTEM for the solution of the Newton system.

- Design at least one scalable (in the dimension of the nonlinear system) case study for run time experiments.

- Compare numerical results and run times with the original solution (direct linear solvers).

- Document your
 - analysis
 - design
 - implementation
 - case studies

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Convex Unconstrained Optimization
Tutorial Exercise 2
Sparse Eigen Data Structures and Linear Solvers

- Replace Eigen/Dense by Eigen/Sparse\(^1\) in LINEAR_SYSTEM.

- Design at least one scalable (both in the size of the state \(\mathbf{x}\) and in the number of parameters in \(\mathbf{p}\)) case study for run time experiments in the context of the NONLINEAR_SYSTEM library.

- Compare numerical results and run times with dense version.

- Document your
 - analysis
 - design
 - implementation
 - case studies

with a slide deck similar to the one used for the lecture.

\(^1\)eigen.tuxfamily.org/dox/group__Sparse__chapter.html
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization
Tutorial Exercise 3
Replacement of dco/c++ by ADOL-C

- Replace dco/c++ by ADOL-C\(^2\) in NONLINEAR_SYSTEM. Use ADOL-C both for the computation of the Jacobian of the residual within Newton’s method and for parameter sensitivity analysis similar to toy_dco.cpp.

- Design at least one scalable (both in the size of the state \(x\) and in the number of parameters in \(p\)) case study for run time experiments.

- Compare numerical results and run times with the dco/c++ version.

- Document your
 - analysis
 - design
 - implementation
 - case studies

 with a slide deck similar to the one used for the lecture.

\(^2\text{github.com/coin-or/ADOL-C}\)
Outline

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Convex Unconstrained Optimization
Tutorial Exercise 4
Linear Solvers for Linear ODEs

- Extend the implicit solver in ODE_SYSTEM such that parameterized systems of explicit linear ordinary differential equations are solved by a linear (instead of the Newton) solver.

- Allow for use of LL^T or LDL^T factorization in case of known symmetry of the Jacobian of the residual.

- Design at least one scalable (in the dimension of the system) case study for run time experiments.

- Compare numerical results and run times with the original (suboptimal) solution.

- Document your
 - analysis
 - design
 - implementation
 - case studies

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver

Sparse Eigen Data Structures and Linear Solvers

Replacement of dco/c++ by ADOL-C

Linear Solvers for Linear ODEs

Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs

Optimization of Parameterized ODEs

Calibration of Parameterized Nonlinear Systems

Convex Unconstrained Optimization
Tutorial Exercise 5
Tangent Sensitivity Analysis of ODEs

▶ Design a scalable (in the number of free parameters, i.e., in the size of p) case study for ODE_SYSTEM; exchange with group working on Tutorial Exercise 6.

▶ Use dco/c++ and ADOL-C for parameter sensitivity analysis of the L_2-norm of the final state $\|x\|_2$ of the system, i.e., for the computation of the gradient of $\|x\|_2$ with respect to p.

▶ Apply both dco/c++ and ADOL-C in tangent mode. Compare numerical results and run times (scaling); exchange with group working on Tutorial Exercise 6.

▶ Document your
 ▶ analysis
 ▶ design
 ▶ implementation
 ▶ case study
with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs

Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization
Tutorial Exercise 6
Adjoint Sensitivity Analysis of ODEs

- Design a scalable (in the number of free parameters, i.e., in the size of \(p \)) case study for \texttt{ODE_SYSTEM}; exchange with group working on Tutorial Exercise 5.

- Use \texttt{dco/c++} and \texttt{ADOL-C} for parameter sensitivity analysis of the \(L_2 \)-norm of the final state \(\|x\|_2 \) of the system, i.e.
 for the computation of the gradient of \(\|x\|_2 \) with respect to \(p \).

- Apply both \texttt{dco/c++} and \texttt{ADOL-C} in adjoint mode. Compare numerical results and run times (scaling); exchange with group working on Tutorial Exercise 6.

- Document your
 - analysis
 - design
 - implementation
 - case study

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs

Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization

Software Lab CES, info@stce.rwth-aachen.de
Tutorial Exercise 7
Runge-Kutta Schemes for ODEs

► Extend ODE_SYSTEM by at least two explicit Runge-Kutta methods.

► Design at least one scalable (in the size of the state \(x \)) case study for ODE_SYSTEM for run time experiments.

► Compare numerical results and run times with those computed by the given (explicit and implicit) Euler methods.

► Document your
 ► analysis
 ► design
 ► implementation
 ► case studies

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization
Tutorial Exercise 8
Optimization of Parameterized ODEs

▶ Extend ODE_SYSTEM by a simple gradient descent method for minimizing the L_2-norm of the final state $\|x\|_2$ of the system as a function of the free parameters in p.

▶ Use dco/c++ for the computation of the gradient.

▶ Design at least one scalable (in the number of free parameters, i.e., in the size of p) case study for run time experiments.

▶ Document your
 ▶ analysis
 ▶ design
 ▶ implementation
 ▶ case studies

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems
Convex Unconstrained Optimization
Tutorial Exercise 9
Calibration of Parameterized Nonlinear Systems

- Extend NONLINEAR_SYSTEM by a simple gradient descent method for fitting the final state \mathbf{x} of the system to “observations” (perturbed simulations) $\mathbf{\tilde{x}}$ through calibration of the free parameters \mathbf{p}. Minimize the least-squares objective $\|\mathbf{x} - \mathbf{\tilde{x}}\|^2_2$.

- Use dco/c++ for the computation of the gradient of the objective with respect to \mathbf{p}.

- Design at least one scalable (in the number of free parameters, i.e., in the size of \mathbf{p}) case study for run time experiments.

- Document your
 - analysis
 - design
 - implementation
 - case studies

with a slide deck similar to the one used for the lecture.
Outline

Iterative Linear Solver
Sparse Eigen Data Structures and Linear Solvers
Replacement of dco/c++ by ADOL-C
Linear Solvers for Linear ODEs
Tangent Sensitivity Analysis of ODEs
Adjoint Sensitivity Analysis of ODEs
Runge-Kutta Schemes for ODEs
Optimization of Parameterized ODEs
Calibration of Parameterized Nonlinear Systems

Convex Unconstrained Optimization
Tutorial Exercise 10
Convex Unconstrained Optimization

- Implement a convex unconstrained optimization method by application of \texttt{NONLINEAR_SYSTEM} to the necessary optimality criterion
 \[\frac{df}{dx}(x(p), p) = 0 \in \mathbb{R}^n \] for parameterized objective functions \(f = f(x(p), p) \) to be specified by the end user.

- Use \texttt{dco/c++} in adjoint mode for the computation of the gradient and of the Hessian of the objective with respect to \(x \).

- Use \texttt{Eigen} for checking the sufficient optimality condition (Hessian \(\frac{d^2f}{dx^2}(x(p), p) \in \mathbb{R}^{n\times n} \) should be positive definite at the stationary point \(x^* \)).

- Design at least one scalable (in the number of free parameters, i.e, in the size of \(p \)) case study for run time experiments.

- Document your
 - analysis
 - design
 - implementation
 - case studies

with a slide deck similar to the one used for the lecture.