
Sparse Matrix-Vector Multiplication

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University

Contents

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 2

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 3

Sparse Matrix-Vector Multiplication
Objective and Learning Outcomes

Objective

I Discussion of blocking for sparse matrix-vector multiplication as a nice
introductory cases study for handling combinatorial problems in scientific
computing.

Learning Outcomes

I You will understand
I storage schemes for sparse matrices
I (1,B)-blocking method
I computational complexity of optimal (1,B)-blocking
I approximate solution of (1,B)-blocking

I You will be able to
I convert sparse matrices into compressed storage
I solve the (1,B)-blocking problem heuristically by reduction to Traveling

Sales Person.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 4

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 5

Sparse Matrix-Vector Multiplication
Motivation

For F : IRn → IRn we look for x∗ such that F (x∗) = 0. Newton’s method
iterates

xi+1 = xi + F ′(xi)−1 · F (xi)

for i = 0, . . . , n − 1 and a given starting point x0.

The Newton step dxi = −F ′(xi)−1 · F (xi) is computed as the solution of the
system of linear equations

F ′(xi) · dxi = −F (xi)

for example, using stationary iterative Methods such as Jacobi or Gauss-Seidel.
Both involve evaluations of (sparse) matrix-vector products.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 6

Newton Step by Iterative Linear Solver
Stationary Iterative Methods

Solve Ax = b iteratively by

xk+1 = Gxk + C

for some starting value x0 that is not too far from the solution. Choose G and
C such that the fixed point

x = Gx + C

is the solution to Ax = b that is

A(Gx + C) = b .

To ensure convergence the absolute value of the largest Eigenvalue of G (the
spectral radius of G) needs to be strictly lower than one, i.e, G needs to be
contractive.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 7

Stationary Iterative Methods
Jacobi

Splitting
A = D + L + U

where D is the diagonal of A and L and U are the corresponding lower and
upper triangular matrices, respectively. Assuming that A has no zeros on the
diagonal, that is D is nonsingular and hence invertible, we get

xk+1 = D−1(b− (L + U) · xk)

from

A · x = b

D · x + (L + U) · x = b

D · x = b− (L + U) · x
x = D−1(b− (L + U) · x) (fixed-point iteration).

⇒ (sparse) matrix-vector product

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 8

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 9

Storage Schemes For Sparse Matrices
Coordinate Format (CF)

Also: Matrix Market format; see https://sparse.tamu.edu/

For

a0,0 a0,1 0
0 a1,1 0

a2,0 0 a2,2

we get

(0, 0, a0,0), (0, 1, a0,1), . . . (2, 2, a2,2)

Potential symmetry can be exploited by storing only the lower triangular part.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 10

Storage Schemes For Sparse Matrices
Row Compressed Storage (RCS)

For a0,0 a0,1 0
0 a1,1 0

a2,0 0 a2,2

we get

aT = (a0,0, a0,1, a1,1, a2,0, a2,2)

κT = (0, 1, 1, 0, 2)

ρT = (0, 2, 3, 5)

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 11

Storage Schemes For Sparse Matrices
Column Compressed Storage (CCS)

For a0,0 a0,1 0
0 a1,1 0

a2,0 0 a2,2

we get

aT = (a0,0, a2,0, a0,1, a1,1, a2,2)

ρT = (0, 2, 0, 1, 2)

κT = (0, 2, 4, 5)

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 12

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 13

y = Ax in RCS
x dense

for i = 0 to m − 1 do
yi = 0
for j = ρi to ρi+1 − 1 do

yi = yi + aj · xκj

Good temporal locality of an algorithm is characterized by minimal time
between accesses to the same data items. Good spatial locality is present if
consecutively accessed data items are close in memory.

We observe good spatial locality in a, κ, ρ, and y Temporal locality is limited
to y. Accesses to x can be irregular (missing temporal and spatial locality; likely
cache misses). Three load operations are required for two arithmetic operations
in the statement inside the inner loop.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 14

y = Ax in RCS
Exercise

a0,0 a0,1 0
0 a1,1 0

a2,0 0 a2,2

 ·
x0
x1
x2

aT = (a0,0, a0,1, a1,1, a2,0, a2,2)

κT = (0, 1, 1, 0, 2)

ρT = (0, 2, 3, 5)

for i = 0 to 2 do
yi = 0
for j = ρi to ρi+1 − 1 do

yi = yi + aj · xκj

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 15

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 16

(1,B)-Blocking
Aim

... exploits distributivity of matrix-vector multiplication, that is

(A1 + A2) · x = A1 · x + A2 · x

... aims to maximize the size of dense (1,B)-submatrices in order to

1. improve spatial locality in x

2. decrease storage required for A

3. decrease number of load operations in matrix-vector product.

Dense (1,B)-blocks allow for storage of single index of first element (instead of
B individual indices) and efficient sequential access due to data locality.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 17

(1,B)-Blocking
Decomposition of Matrix-Vector Product

Decomposition of A with maximum block size B into a sum of (1, b)-blocked
matrices for 1 ≤ b ≤ B enables efficient multiplication of individual matrices
with the given vector x e.g,

A = A2
1,2 + A2

1,1 = A3
1,3 + A3

1,2 + A3
1,1

∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗

 =

∗ ∗

∗ ∗
∗ ∗

∗ ∗

+

∗

∗ ∗

∗

=

∗ ∗ ∗

∗ ∗ ∗

+

∗ ∗
∗ ∗

+

∗ ∗

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 18

(1,B)-Blocking
Example

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

(1, 2)-Blocking (Exercise: symmetric RCS)

a2 = (4,−1,−1, 4, 4,−1,−1,−1) a1 = (−1,−1,−1, 4)

κ2 = (0, 0, 2, 1) κ1 = (2, 3, 0, 3)

ρ2 = (0, 1, 2, 3, 4) ρ1 = (0, 1, 2, 3, 4)

(1, 3)-Blocking (Exercise: symmetric RCS)

a3 = (4,−1,−1,−1,−1, 4) a2 = (−1, 4, 4,−1) a1 = (−1,−1)

κ3 = (0, 1) κ2 = (0, 2) κ1 = (3, 0)

ρ3 = (0, 1, 1, 1, 2) ρ2 = (0, 0, 1, 2, 2) ρ1 = (0, 0, 1, 2, 2)

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 19

(1,B)-Blocked RCS
Matrix-Vector Product

for i = 0 to m − 1 do
yi = 0
for j = ρi to ρi+1 − 1 do

yi = yi +
〈
(ak)k=j·B,...,j·B+B−1, (xk)k=κj ,...,κj+B−1

〉

where the inner product
〈
(ak)k=j·B,...,j·B+B−1, (xk)k=κj ,...,κj+B−1

〉
can / should

be implemented efficiently, for example, using BLAS.1

Exercise: A3
1,3 · x for A3

1,3 = (a3, κ3, ρ3)

1www.netlib.org/blas

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 20

Block Size (BS) Problem
Formulation

Given an m× n matrix A ≡ (ai,j), find an ordering of columns in A to maximize
the number of (i , j) pairs satisfying ai,j 6= 0 and ai,j+1 6= 0.

Note: Switching two columns in A requires switching of the corresponding
entries in x.

Example: Pick a good ordering for
a b c d

e f g
h i

j k
l m

out of 5! = 120 options ...

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 21

BS Problem
Example

a b c d

e f g
h i

j k
l m

(
1 2 3 4 5

)
→

a c b d

f e g
h i

k j
m l

(
1 3 2 5 4

)

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 22

BS Problem (Decision Version)
Computational Complexity

Given an m × n matrix A ≡ (ai,j) and an integer K > 0.

Is there an ordering of columns in A such that the number of (i , j) pairs
satisfying ai,j 6= 0 and ai,j+1 6= 0 is greater than or equal to K?

The BS problem is NP-complete.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 23

Computational Complexity
Classes

C
o
m

p
le

x
it

y

P NP P = NP

NP-Hard

NP-Complete

P

NP

NP-Hard

P = NP =

NP-Complete

I P: solvable and verifiable in polynomial2 time, e.g, sorting

I NP: verifiable in polynomial time, e.g, decision version of BS

I NP-hard: not solvable in polynomial time, e.g, optimization version of BS

I NP-complete: not solvable, but verifiable in polynomial time, decision
version of BS

2polynomial in the size of the given problem formulation
,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 24

BS is NP-complete
Proof

I Pick known NP-complete problem K, e.g,
I Hamiltonian Path (HP): Given a graph3 G = (V ,E). Does G contain a

Hamiltonian path (a path that contains all vertices in G exactly once)?

I Derive an invertible polynomial construction of an instance of BS for each
instance in K.

A polynomial algorithm for BS would also solve K yielding a contradiction
to P 6= NP . . .

I Show that any proposed solution to BS can be validated with polynomial
computational cost.

3Graphs do not contain parallel edges, that is, all (i , j) ∈ E are unique.
,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 25

BS is NP-complete
Proof

Reduction from HP:

For given G = (V ,E) construct A ∈ IR |E |×|V | such that

ej = (i , k) ∈ E ⇔ aj,i 6= 0 ∨ aj,k 6= 0.

Two adjacent columns can share nonzeros in at most one row as there are no
parallel edges allowed. There can be at most |V | − 1 (1, 2)-blocks after
reordering, achieved when the vertices of consequent columns share an edge in
G , which defines a Hamiltonian path in G .

A given solution of BS can be validated in polynomial time by simply counting
the number of consecutive nonzero entries. �

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 26

BS is NP-complete
Reduction from HP

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 27

Solving BS
Reduction to Traveling Sales Person

I Pick a well-studied NP-complete problem K, e.g,
I Traveling Sales Person (TSP): 4 Given a graph G = (V ,E) with

weights wi,j on its edges (i , j) find a Hamiltonian path (v1, . . . , vn) that
maximizes

∑n−1
j=1 wvj ,vj+1 .

Derive an efficiently invertible construction of an instance of K for each
instance in BS.

I Apply known algorithm to instance of K.

I Map solution back to instance of BS.

4TSP cannot be “easier” than HP.
,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 28

Solving BS
Reduction to Traveling Sales Person

For given A ∈ IRm×n construct G = (V ,E) where

V = {1, . . . , n}

(Vertices in G represent columns in A) and

E = {(i , j)|∃k ∈ {1, . . . , n} : a(k , i) 6= 0 ∧ a(k, j) 6= 0}

(Vertices in G are connected by an edge if the corresponding columns in A have
both nonzero entries in the same row.)

A weight wi,j > 0 is associated with every edge (i , j) such that

wi,j = |{k ∈ {1, . . . , n} : a(k , i) 6= 0 ∧ a(k , j) 6= 0}|

(Edges in G are weighted with the numbers of rows in which the corresponding
columns in A have both nonzero entries.)

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 29

Solving BS
Reduction to Traveling Sales Person

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 30

Solving BS
A Heuristic for TSP

Greedy heuristic:

1. Pick start vertex π1 at random.

2. Pick πi+1 for i = 1, . . . , n − 1 such that wi,i+1 is maximized.

Solves example for π1 = 1.

Exercise: Try π1 = 2 and π1 = 4.

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 31

Outline

Objective and Learning Outcomes

Motivation

Storage Schemes For Sparse Matrices

y = Ax in RCS

(1,B)-Blocking
Matrix-Vector Product in (1,B)-Blocked RCS
Block Size Problem
Block Size is NP-Complete
Solving Block Size

Summary and Next Steps

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 32

Sparse Matrix-Vector Multiplication
Summary and Next Steps

Summary

I Block Size turns out to be a nice introductory cases study for handling
combinatorial problems in scientific computing.

Next Steps

I Work through the exercises.

I Continue the course to find out more ...

,

Sparse Matrix-Vector Multiplication, info@stce.rwth-aachen.de 33

	Objective and Learning Outcomes
	Motivation
	Storage Schemes For Sparse Matrices
	y=A x in RCS
	(1,B)-Blocking
	Matrix-Vector Product in (1,B)-Blocked RCS
	Block Size Problem
	Block Size is NP-Complete
	Solving Block Size

	Summary and Next Steps

