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Abstract

Fuzzy arithmetic on fuzzy numbers can be used to introduce a form of uncertainty quantification
into numerical computation. For a function f : Sn → S on fuzzy numbers at least two different
kinds of sensitivities can be considered.

1. The sensitivities of the parametrization of the output fuzzy number y = f(x) with regard to
the parametrization of the input fuzzy numbers xi for 1 ≤ i ≤ n (e.g. if x1 = (x1

1, x
2
1, x

3
1) and

y = (y1, y2, y3) are the parameters of triangular fuzzy numbers we can compute ∂y1/∂x2
1).

2. The derivatives of the fuzzy output with regard to the fuzzy inputs ∂y/∂xi for 1 ≤ i ≤ n
which again are fuzzy numbers.

We demonstrate how to apply adjoint algorithmic differentiation (AAD) via operator overloading
to a fuzzy arithmetic via operator overloading to arrive at both kinds of sensitivities depending
on the order of overloading. The application of AAD comes with its usual benefit of computing
sensitivities for all inputs with regard to an output in O(1) · cost(f) instead of O(n) · cost(f) where
cost(f) is the computational cost of evaluating f .

1 Fuzzy Arithmetic using α-cuts

A fuzzy number x has a membership function µx which for each value z ∈ R assigns a degree of
membership µx(z) ∈ [0, 1]. There exists a value ẑ ∈ R for which µx(ẑ) = 1 and µx is monotone
around this value, i.e. µx is increasing left of ẑ and decreasing right of ẑ (for all z1 ≤ z2 ≤ ẑ we have
µx(z1) ≤ µx(z2) and for all ẑ ≤ z1 ≤ z2 we have µx(z1) ≥ µx(z2)).

An α-cut of a fuzzy number x is the set of numbers z ∈ R with a membership µx(z) ≥ α. Because
of the monotony of µx around ẑ an α-cut can be described by an interval [z1, z2] with z1 ≤ ẑ ≤ z2
and µx(z1) = µx(z2) = α. A fuzzy number can be described by sufficiently many α-cuts depending on
the complexity of its membership function. Fuzzy arithmetic operations are carried out by performing
interval arithmetic on the α-cuts of the same levels.

Example Consider the addition of fuzzy numbers y = x1 + x2 with α-cuts being defined by the
following intervals

α x1 x2 y
1 {5} [9, 11] [14, 16]
0.5 [4, 6] [5, 15] [9, 21]
0 [0, 10] [4, 16] [4, 26]

Fuzzy arithmetic can be implemented via operator overloading by providing a data type that
contains an array of intervals describing the α-cuts. Binary operators are overloaded by applying the
interval arithmetic operator for each pair of same level α-cuts of both operands.

Given an interval type
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Figure 1: Fuzzy addition y = x1 + x2

1 template <class T> class interval {

2 private:

3 T low;

4 T up;

5 };

we can implement a fuzzy type

1 template <class T, int N> class fuzzy {

2 private:

3 interval <T> cut[N];

4 }

We can instantiate the fuzzy data type with 2 α-cuts as follows

1 fuzzy <double , 2> x;

A binary operator like addition is overloaded as follows

1 template <class T, int N> inline

2 fuzzy <T, N> operator +(fuzzy <T, N> const & x, fuzzy <T, N> const & y) {

3 fuzzy <T, N> temp;

4 for (int i = 0; i < N; i++)

5 temp.set_cut(i, x.get_cut(i) + y.get_cut(i));

6 return temp;

7 }

where the addition of two α-cuts is implemented via an interval arithmetic library.

2 Combining AD and Fuzzy Arithmetic

We can instantiate the dco/c++ adjoint data type of with base type double as follows

1 dco::ga1s <double >:: type x;

There are two ways of combining the fuzzy type with the dco type

1. A fuzzy type with underlying adjoint data type can be used, which results in adjoint data types
for interval bounds of all α-cuts.

1 fuzzy <dco::ga1s <double >::type , 2> x;

Using this approach we can compute sensitivities of the parametrization of the fuzzy number
that is the function output with regard to the parametrizations of the fuzzy numbers that are
the inputs of the function.
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2. An adjoint type with underlying fuzzy data type can be used, which results in the computation
of the chain rule and partial derivatives using fuzzy data types and the sensitivities thus being
fuzzy values.

1 dco::ga1s < fuzzy <double , 2> >::type x;

Differentiation rules for fuzzy numbers need to be implemented into the AD framework in order
to arrive at the desired derivative definitions.

3 Speelpenning Example

An example of the two approaches introduced in the previous section using the Speelpenning function
y =

∏N
2=i xi can be downloaded from http://www.stce.rwth-aachen.de/software/fuzzyAD.html.

In the fuzzyAD.cpp file consider the following four functions:

• _dco() illustrates the use of the dco/c++ adjoint data type and tape for AAD of the speelpenning
function.

• _fuzzy() illustrates the use of the fuzzy data type as is and computes the sensitivity with regard
to one α-cut interval bound using a finite difference approach.

• _dco_fuzzy() instantiates the adjoint data type with a fuzzy base type, i.e. we compute the
adjoint sensitivities xi,(1) as fuzzy numbers.

• _fuzzy_dco() instantiates the fuzzy data type with an adjoint base type and illustrates how to
compute adjoint sensitivities of individual α-cut interval bounds.

In the fuzzy_uncertainty.cpp file we compare three different approaches of uncertainty quantifi-
cation for the Speelpenning function:

• Fuzzy sets with triangular form as described above. See _fuzzy()

• Monte Carlo where we sample inputs from a triangular distribution. See _monte_carlo()

• First order moments propagation, i.e. approximating variance by the first order Taylor expansion,
with the assumption that the output also follows a symmetric triangular distribution (which it
does not). See _dco_uncertainty() and _fd_uncertainty().

Since fuzzy set theory is not based on probability theory it is not really “fair” to compare a fuzzy
set approach with a probabilistic approach.

In Figure 2 we show the input distributions or fuzzy sets for inputs with mean 1 and variance 0.01
(for fuzzy set we use variance as 0-cut). We normalize in such a way that the probability density
function has a value of 1 at the tip of the triangle. With the normalization the triangular fuzzy set
and distributions look the same.

The output uncertainty is quantified by the output distributions or fuzzy set in Figure 3. We see
that the fuzzy set gives a strong “over approximation” of the uncertainty even for small variance. The
higher moments of the distribution are clearly seen missing from the moments based approach.

Note that both a fuzzy set and first order moments based approach can be accomplished with
O(1) · cost(f) (using an adjoints) but Monte Carlo costs is n · cost(f) where n is the number of samples
required in terms of limit theorems.
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Figure 2: Normalized distributions and fuzzy set for inputs
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Figure 3: Normalized distributions and fuzzy set for outputs
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