
Discrete Adjoint CHT Simulation in OpenFOAM

Markus Towara1, Martin Spiller2, Conrad Wächter3

17th OpenFOAM Workshop, Cambridge UK
1 STCE, RWTH Aachen University
2 IsaTEC Aachen
3 Cloud & Heat Technologies GmbH, Dresden

Motivation

• STCE develops and maintains an AD (automatic differentiation) enabled fork of OpenFOAM
• Adjoint (reverse) and Tangent (forward) implementations available (+higher order)
• Adjoint AD gives accurate derivatives at (comparatively) cheap cost
• AD framework was applied to CHT problems in project ”Entwicklung optimierter
Kühlgeometrien mittels adjungierter Simulationsmethoden für die Direkt-Heißwasserkühlung
von Rechenzentren”

1

Motivation: Topology Optimization

• Augment NS momentum equations by source term uα:

(u ⊗∇) u = ν∇2u − 1

ρ
∇p−αu

• Parameter α allows to penalize cells of the geometry to redirect flow
• Penalty term can be interpreted as porosity, according to Darcy’s law

∆p

∆x
= −(

µ

κ
)u

Initial design space Optimized penalty field Re-Parametrization

2

How to find appropriate penalty field α

• Define cost function J , e.g. total power loss between inlet and outlet:

J = −
∫
Γ

(
p+

1

2
∥u∥2

)
u · n dΓ

• Calculate sensitivity of the cost function w.r.t. parameters αi

dJ
dαi

=???

• Calculate an updated porosity field αn+1, e.g. using gradient descent:

αn+1
i = αn

i − λ ·
dJ n

dαn
i

, with constraints 0 ≤ αi ≤ αmax

• Loop until α converged...

x

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

y

1.0
0.5
0.0

0.5
1.0

1.5
2.0
2.5
3.0

0

500

1000

1500

2000

2500

3

Motivation for Algorithmic Differentiation

Efficient optimization methods need gradients!

• Number of inputs to be optimized might be in the millions
• Calculating the gradient with finite differences (FD) extremely expensive
• Number of outputs usually 1 ≤ m ≪ n

• Adjoint methods allow to calculate the gradient with only m additional (augmented) function
evaluations

4

How to obtain adjoint sensitivities

Continuous method: (some adjoint solvers in OpenFOAM.com)

• Differentiate first, discretize later

• Derive adjoint equations analytically

• Implement, discretize, and solve adjoint equations along primal

+ Fast, physically interpretable

− Hard to derive, can be inconsistent to primal

Discrete method: (our fork)

• Discretize first, differentiate later

• Use implementation to get the derivatives (Algorithmic Differentiation)

+ Flexible, derivation automatic, sensitivities consistent to implementation

− Memory intensive, generally slower than continuous

continuous
primal

problem

continuous
adjoint
problem

discretized
primal

problem

discretized
adjoint
problem

discrete
adjoint
problem

algorithmic
differentiation

analytical
 derivation

primal
solution

adjoint
solution

adjoint
solution

5

AD Basics1

• Assume y = f(x) with x ∈ Rn, y ∈ Rm

• Forward (tangent) AD: ẏ = ḟ(x, ẋ) = ∇f · ẋ
Get Jacobian at cost O(n · cost(f)) by letting ẋ ∈ Rn range over ei

• Reverse (adjoint) AD: x̄ = f̄(x, ȳ) = ȳ · ∇f

Get Jacobian at cost O(m · cost(f)) by letting ȳ ∈ Rm range over ei

• Often m ≪ n or even m = 1 (e.g. scalar cost function)
• Modes can be recursively combined to obtain higher derivatives
• Sparsity in Jacobians / Hessians can be exploited by coloring approaches

1A. Griewank, A. Walther: Evaluating Derivatives, 2nd Edition

6

Discrete Adjoint OpenFOAM

• Fork of OpenFOAM.com, currently based on OpenFOAM.com v2112
• We use operator overloading AD tool
• All floating point variables replaced by custom AD datatype (defined in ad.hpp)
• All libraries in src/ are ”ADified”
• Custom solvers build on top of base solvers
(e.g. simpleFoam→ adjointSimpleFoam)

• Currently no good interaction with existing vanilla OpenFOAM optimization capabilities :(

7

Implications and limitations of ADified OpenFOAM

• Comes at a cost due to operator overloading, memory allocation, reverse propagation
• Run-time increased by factor ≈ 5− 20

• Remember: All floating point variables replaced by custom AD datatype (no fully templated
floating point datatype in OpenFOAM :()

• ⇒ can not (easily) fall back to double implementations for passive code
• Linear solver can be symbolically differentiated during reverse propagation

x = A \ b ⇒ b̄ = AT \ x̄

Ā = −x · b̄T

• Parallelism by AdjointMPI (AMPI)

8

Features of Discrete Adjoint OpenFOAM

• Checkpointing full simulation runs (trading memory for run time)
• Reverse Accumulation (iterative re-evaluation of last iteration step)
• Piggy-Back optimization (design update with incomplete gradient)
• Implicit differentiation of residual:

R(α, x(α)) = 0 ⇔ ∂R
∂x

∂x

∂α
= −∂R

∂α

should be exploited more, can also use tangent mode or FD due to sparsity.

9

Motivation for CHT from Cloud & Heat

• Cloud & Heat builds custom server solutions with water cooling
• Wants to re-use recovered heat instead of just convecting away to outside air
• Has to work with high inlet temperatures, want to maximize temperature delta

10

Project partner contributions

• STCE developed adjoint optimization technology in OpenFOAM
• IsaTEC performed validation studies with FloEFD and investigated fitting of the metal cooler
geometries into plastic flow channels

• Cloud & Heat designed and constructed test chamber and ran tests

11

Challenges of Adjoint Conjugate Heat Transfer (CHT)

• (One) goal: Have cost function evaluated in different region than independents
• E.g.: Cost function: Average die temperature
• E.g.: Independents: Node positions of fluid-to-solid boundary nodes

• Source of complexity: fluid and solid regions with implicit coupling
• slow convergence of temperature

• Meshes on both sides not necessary conforming on the interface
• need to differentiate through point to point interpolation on interface

• Boundary conditions used have hidden data members which have to be explicitly handled
with our checkpointing approach

• For Topology optimization: Physical properties of solid domain have to be replicated in fluid
regions where artificial material is placed.

12

Simulations performed

• Parametric simulation (identify suitable baseline):
• Geometry generation with OpenSCAD
• Pre-processing (splitting into sub-stls) w. python
• Meshing with cfMesh
• Simulation with chtMultiRegionSimpleFoam
• Glued together with bash
• Studied different configurations of fin and pin coolers

13

Adjoint Simulation

• Adjoint simulation:
• Simulate single fin with symmetries (to reduce memory requirements)
• Treat surface mesh points as parameters
• Morph mesh in direction of normals, scaled by sensitivities

14

Summary

Summary:

• AD enables efficient and accurate computation of derivatives
• Disrcete adjoint OpenFOAM applied to heat transfer problems

Want to apply AD to your own problems?

• Discrete adjoint OpenFOAM is available as open source on request
• https://stce.rwth-aachen.de/foam

15

Acknowledgements

Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0442.

Project supported by the Federal Ministry for Economical Affairs and Enegy (BMWi), on the basis of a decision by the German

Bundestag
16

