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Motivation

• STCE develops and maintains an AD (automatic differentiation) enabled fork of OpenFOAM
• Adjoint (reverse) and Tangent (forward) implementations available (+higher order)
• Adjoint AD gives accurate derivatives at (comparatively) cheap cost
• AD framework was applied to CHT problems in project ”Entwicklung optimierter
Kühlgeometrien mittels adjungierter Simulationsmethoden für die Direkt-Heißwasserkühlung
von Rechenzentren”
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Motivation: Topology Optimization

• Augment NS momentum equations by source term uα:

(u ⊗∇) u = ν∇2u − 1

ρ
∇p−αu

• Parameter α allows to penalize cells of the geometry to redirect flow
• Penalty term can be interpreted as porosity, according to Darcy’s law

∆p

∆x
= −(

µ

κ
)u

Initial design space Optimized penalty field Re-Parametrization
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How to find appropriate penalty field α

• Define cost function J , e.g. total power loss between inlet and outlet:

J = −
∫
Γ

(
p+

1

2
∥u∥2

)
u · n dΓ

• Calculate sensitivity of the cost function w.r.t. parameters αi

dJ
dαi

=???

• Calculate an updated porosity field αn+1, e.g. using gradient descent:

αn+1
i = αn

i − λ ·
dJ n

dαn
i

, with constraints 0 ≤ αi ≤ αmax

• Loop until α converged...
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Motivation for Algorithmic Differentiation

Efficient optimization methods need gradients!

• Number of inputs to be optimized might be in the millions
• Calculating the gradient with finite differences (FD) extremely expensive
• Number of outputs usually 1 ≤ m ≪ n

• Adjoint methods allow to calculate the gradient with only m additional (augmented) function
evaluations
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How to obtain adjoint sensitivities

Continuous method: (some adjoint solvers in OpenFOAM.com)

• Differentiate first, discretize later

• Derive adjoint equations analytically

• Implement, discretize, and solve adjoint equations along primal

+ Fast, physically interpretable

− Hard to derive, can be inconsistent to primal

Discrete method: (our fork)

• Discretize first, differentiate later

• Use implementation to get the derivatives (Algorithmic Differentiation)

+ Flexible, derivation automatic, sensitivities consistent to implementation

− Memory intensive, generally slower than continuous   
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AD Basics1

• Assume y = f(x) with x ∈ Rn, y ∈ Rm

• Forward (tangent) AD: ẏ = ḟ(x, ẋ) = ∇f · ẋ
Get Jacobian at cost O(n · cost(f)) by letting ẋ ∈ Rn range over ei

• Reverse (adjoint) AD: x̄ = f̄(x, ȳ) = ȳ · ∇f

Get Jacobian at cost O(m · cost(f)) by letting ȳ ∈ Rm range over ei

• Often m ≪ n or even m = 1 (e.g. scalar cost function)
• Modes can be recursively combined to obtain higher derivatives
• Sparsity in Jacobians / Hessians can be exploited by coloring approaches

1A. Griewank, A. Walther: Evaluating Derivatives, 2nd Edition
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Discrete Adjoint OpenFOAM

• Fork of OpenFOAM.com, currently based on OpenFOAM.com v2112
• We use operator overloading AD tool
• All floating point variables replaced by custom AD datatype (defined in ad.hpp)
• All libraries in src/ are ”ADified”
• Custom solvers build on top of base solvers
(e.g. simpleFoam→ adjointSimpleFoam)

• Currently no good interaction with existing vanilla OpenFOAM optimization capabilities :(
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Implications and limitations of ADified OpenFOAM

• Comes at a cost due to operator overloading, memory allocation, reverse propagation
• Run-time increased by factor ≈ 5− 20

• Remember: All floating point variables replaced by custom AD datatype (no fully templated
floating point datatype in OpenFOAM :( )

• ⇒ can not (easily) fall back to double implementations for passive code
• Linear solver can be symbolically differentiated during reverse propagation

x = A \ b ⇒ b̄ = AT \ x̄

Ā = −x · b̄T

• Parallelism by AdjointMPI (AMPI)
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Features of Discrete Adjoint OpenFOAM

• Checkpointing full simulation runs (trading memory for run time)
• Reverse Accumulation (iterative re-evaluation of last iteration step)
• Piggy-Back optimization (design update with incomplete gradient)
• Implicit differentiation of residual:

R(α, x(α)) = 0 ⇔ ∂R
∂x

∂x

∂α
= −∂R

∂α

should be exploited more, can also use tangent mode or FD due to sparsity.

9



Motivation for CHT from Cloud & Heat

• Cloud & Heat builds custom server solutions with water cooling
• Wants to re-use recovered heat instead of just convecting away to outside air
• Has to work with high inlet temperatures, want to maximize temperature delta
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Project partner contributions

• STCE developed adjoint optimization technology in OpenFOAM
• IsaTEC performed validation studies with FloEFD and investigated fitting of the metal cooler
geometries into plastic flow channels

• Cloud & Heat designed and constructed test chamber and ran tests
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Challenges of Adjoint Conjugate Heat Transfer (CHT)

• (One) goal: Have cost function evaluated in different region than independents
• E.g.: Cost function: Average die temperature
• E.g.: Independents: Node positions of fluid-to-solid boundary nodes

• Source of complexity: fluid and solid regions with implicit coupling
• slow convergence of temperature

• Meshes on both sides not necessary conforming on the interface
• need to differentiate through point to point interpolation on interface

• Boundary conditions used have hidden data members which have to be explicitly handled
with our checkpointing approach

• For Topology optimization: Physical properties of solid domain have to be replicated in fluid
regions where artificial material is placed.
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Simulations performed

• Parametric simulation (identify suitable baseline):
• Geometry generation with OpenSCAD
• Pre-processing (splitting into sub-stls) w. python
• Meshing with cfMesh
• Simulation with chtMultiRegionSimpleFoam
• Glued together with bash
• Studied different configurations of fin and pin coolers
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Adjoint Simulation

• Adjoint simulation:
• Simulate single fin with symmetries (to reduce memory requirements)
• Treat surface mesh points as parameters
• Morph mesh in direction of normals, scaled by sensitivities
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Summary

Summary:

• AD enables efficient and accurate computation of derivatives
• Disrcete adjoint OpenFOAM applied to heat transfer problems

Want to apply AD to your own problems?

• Discrete adjoint OpenFOAM is available as open source on request
• https://stce.rwth-aachen.de/foam
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