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Preface

This document supports an introductory short course on first-order Algorithmic Differentiation
(AD) using the AD software tools dco 0.9 and dcc 0.9. It is based on

U. Naumann: The Art of Differentiating Computer Programs. An Introduction to Algorithmic
Differentiation. Number 24 in Software, Environments, and Tools, SIAM, 2012.

and can only be a first step toward coverage of the material therein including

• motivating uses of derivatives in numerical algorithms

• second- and higher-order tangent-linear and adjoint code

• checkpointing through call tree reversal

• detection and exploitation of sparsity

• development and use of AD software tools.
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Chapter 1

Introduction to Algorithmic

Differentiation

This very compact introduction to Algorithmic Differentiation (AD) is based on [2]. It is meant
to set the stage for the user guides of the AD software tools dco 0.9 and dcc 0.9 presented in
Appendices A and B, respectively, and described in greater detail in [2]. Refer to the same book
and [1] for comprehensive coverage of AD.

1.1 Functionality

In AD, we consider implementations of multivariate vector functions

F : Rn → R
m : y = F (x)

as functions/subroutines written in some programming language, for example

void f ( int n , int m, double ∗x , double ∗y )

in C/C++. We are interested in the accurate computation of first (gradients form = 1 or Jacobians
for m > 1), second (Hessians), or higher derivatives of the dependent outputs y = (yj)j=0,...,m−1

with respect to the independent inputs x = (xi)i=0,...,n−1 at points for which the given implemen-
tation f of F is once, twice, or more often continuously differentiable. For notational simplicity,
passive arguments that are neither independent inputs nor dependent outputs are not taken into
account for the time being. Conceptually, their presence adds nothing to the formal framework
outlined in the following. Throughout this introductory chapter we assume that the sets of input
and output variables are disjoint. Refer to [2] for a discussion of the general case.

1.1.1 First Derivative Code

Tangent-Linear Routine The first-order tangent-linear routine (y(1),y) = F (1)(x,x(1)) com-
putes the directional derivative y(1) of F in direction x(1) in addition to the function value:

y(1) = ∇F (x) · x(1)

y = F (x) ,

where ∇F (x) ≡ ∇x(x) ∈ R
m×n denotes the Jacobian (matrix) of F. The signature of the tangent-

linear 1st-order scalar routine becomes

7
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void t 1 s f ( int n , int m, double ∗x , double ∗ t 1 s x
double ∗y , double ∗ t 1 s y )

where x(1) ≡ t1s x and y(1) ≡ t1s y. The underlying semantic modification of f can be imple-
mented alternatively by source-to-source transformation or by operator and function overloading.
dco 0.9 takes the latter approach. See Section 1.2.1 for details on the implementation of tangent-
linear first-order scalar mode by overloading.

The entire Jacobian can be accumulated by letting x(1) range over the Cartesian basis vectors
in R

n with a computational cost of O(n) · Cost(F ), where Cost(F ) denotes the computational
cost of an evaluation of the given implementation f of F. Sparsity can and should be exploited.
Single directional derivatives can be obtained at a computational cost of O(1) · Cost(F ). The
induced overhead is typically small, that is < 2. This complexity result is of particular interest
in the context of matrix-free solvers for nonlinear systems used, for example, for the solution of
nonlinear (partial) differential equations.

Adjoint Routine The first-order adjoint routine (x(1),y) = F(1)(x,x(1),y(1)) increments the
input value of x(1) with the adjoint of F in direction y(1) in addition to the computation of the
function value:

y = F (x)

x(1) = x(1) + (∇F (x))
T
· y(1)

y(1) = 0 .

Adjoints y(1) of the outputs are set to zero by the adjoint function. The signature of the adjoint
1st-order scalar routine becomes

void a 1 s f ( int n , int m, double ∗x , double ∗ a1s x
double ∗y , double ∗ a1s y )

where x(1) ≡ a1s x and y(1) ≡ a1s y. See Section 1.2.1 for details on the implementation of adjoint
first-order scalar mode by overloading.

The entire Jacobian can be accumulated by setting x(1) = 0 on input followed by letting y(1)

range over the Cartesian basis vectors in R
m with a computational cost of O(m) ·Cost(F ). Again,

sparsity can and should be exploited. Combinations of tangent-linear and adjoint modes may
be more effective in the sparse case than any of two modes applied separately. Gradients of
scalar (m = 1) multivariate functions can be obtained at a computational cost of O(1) · Cost(F ).
This complexity result is of particular interest in the context of first-order nonlinear programming
methods used, for example, in the context of parameter estimation or optimal control. The induced
overhead depends on the quality of the given implementation of reverse mode.

1.1.2 Case Study

Consider the simple multivariate scalar function

f(x) =

(

n−1
∑

i=0

x2
i

)2

(1.1)

used in [2] to illustrate the superiority of adjoint mode AD in the context of nonlinear programming.
A possible implementation is the following:

1 void f ( int n , double ∗x , double &y) {
2 y=0;
3 for ( int i =0; i<n ; i++) y=y+x [ i ]∗ x [ i ] ;

STCE
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Figure 1.1: Run time of gradient accumulation using first-order tangent-linear (t1) and adjoint
(a1) versions of the given implementation of Equation (1.1). The tangent-linear method yields a
computational cost of O(n) ·Cost(f). The run time of the single evaluation of the adjoint code is
negligible for the problem sizes considered.

4 y=y∗y ;
5 }

Figure 1.1 compares the run times of tangent-linear and adjoint codes for the accumulation of the
gradient ∇f(x) ∈ R

n for increasing values of n. While the run time cost ratio between the adjoint
code and an original function evaluation turns out to be independent of n the same quantity grows
with n for the tangent-linear code.

1.1.3 Second and Higher Derivative Code

Second derivatives can be computed by second-order tangent-linear and second-order adjoint code.
The former is obtained by applying tangent-linear mode AD to a first-order tangent-linear code.
The Hessian ∇2F (x) ≡ ∇2

x
F (x) ∈ R

m×n×n can be accumulated at the computational cost of
O(n2) · Cost(F ). The computational complexity is the same as that of second-order finite differ-
ences. Some run time savings result from the possible exploitation of symmetry and sparsity as
in second-order finite differences.

Application of tangent-linear mode AD to a first-order adjoint code yields a second-order adjoint
code. The entire Hessian can be accumulated at a computational cost of O(n·m)·Cost(F ). Form =
1, a single Hessian-vector product can be computed at the computational cost of O(1) · Cost(F ),
that is, at a constant multiple of the cost of evaluating F. This complexity result is of particular
interest in the context of matrix-free second-order nonlinear programming methods.

Higher derivative code is defined recursively. k-th-order tangent-linear or adjoint code is obtained
by applying tangent-linear mode AD to a (k − 1)-th-order tangent-linear or adjoint code, respec-
tively.

STCE
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1.2 Implementation by Overloading

Implementations of AD by overloading are best explained in terms of the linearized directed acyclic
graph. The execution of a numerical routine that implements y = F (x) as described in Section 1.1
induces a directed acyclic graph (DAG) representing the single assignment code (SAC)

for j = n, . . . , n+ p+m− 1

vj = ϕj(vi)i≺j ,
(1.2)

where i ≺ j denotes a direct dependence of vj on vi. Within the SAC the result of each elemental
function ϕj is assigned to a unique auxiliary variable vj . The n independent inputs xi = vi, for
i = 0, . . . , n − 1, are mapped onto m dependent outputs yj = vn+p+j , for j = 0, . . . ,m − 1. The
values of p intermediate variables vk are computed for k = n, . . . , n+p−1. The corresponding DAG
G = (V,E) consists of integer vertices V = {0, . . . , n+p+m−1} and edges E = {(i, j)|i ≺ j}. The
vertices are sorted topologically with respect to variable dependence, that is, ∀i, j ∈ V : (i, j) ∈
E ⇒ i < j.

Example 1 For n = 3 the SAC of the given implementation of (1.1) becomes

v0 = x0

v1 = x1

v2 = x2

v3 = v20

v4 = v21

v5 = v22

v6 = v3 + v4

v7 = v6 + v5

v8 = v27

y = v8

The corresponding DAG is shown in Figure 1.2.

The SAC is linearized by augmenting each SAC assignment with the computation of local partial
derivatives of the variable on the left-hand side with respect to all variables on the right-hand side:

for j = n, . . . , n+ p+m− 1

cj,k =
∂ϕj(vi)i≺j

∂vk
for k ≺ j

vj = ϕj(vi)i≺j .

(1.3)

The linearized SAC induces a linearized DAG where local partial derivatives are attached to the
corresponding edges in the DAG.

STCE
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0 : x0

3 : v20

1 : x1 2 : x2

4 : v21 5 : v22

6 : v3 + v4

7 : v6 + v5

8 : v27

Figure 1.2: DAG of the given implementation of y =
(

∑n−1
i=0 x2

i

)2

for n = 3

Example 2 For n = 3 the linearized SAC of the given implementation of (1.1) becomes

v0 = x0

v1 = x1

v2 = x2

c3,0 = 2 · v0; v3 = v20

c4,1 = 2 · v1; v4 = v21

c5,2 = 2 · v2; v5 = v22

c6,3 = 1; c6,4 = 1; v6 = v3 + v4

c7,6 = 1; c7,5 = 1; v7 = v6 + v5

c8,7 = 2 · v7; v8 = v27

y = v8

The corresponding linearized DAG is shown in Figure 1.3. Local partial derivatives are attached
to the edges.
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0 : x0

3 : v20

1 : x1 2 : x2

4 : v21 5 : v22

6 : v3 + v4

7 : v6 + v5

8 : v27

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

Figure 1.3: Linearized DAG of the given implementation of y =
(

∑n−1
i=0 x2

i

)2

for n = 3

1.2.1 First Derivative Code

Tangent-Linear Code A tangent-linear code propagates directional derivatives at point x in
direction x(1) of all intermediate variables alongside with their values as in Equation (1.4):

for j = n, . . . ,n+ p+m− 1

v
(1)
j =

∑

k≺j

∂ϕj(vi)i≺j

∂vk
· v

(1)
k =

∑

k≺j

cj,k · v
(1)
k

vj = ϕj(vi)i≺j .

(1.4)

Implementation by overloading replaces all active floating-point variables1 vj with a pair (vj , v
(1)
j )

consisting of the original value and the associated directional derivative. All arithmetic operators
and intrinsic functions are overloaded to implement Equation (1.4).

The Jacobian of y with respect to x can be computed by letting x(1) range over the Cartesian
basis vectors in R

n.

1... carrying potentially nonzero directional derivatives

STCE
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0 : ↑ x0 ↑ x
(1)
0

3 : ↑ v20 ↑ c3,0 · v
(1)
0

1 : ↑ x1 ↑ x
(1)
1 2 : ↑ x2 ↑ x

(1)
2

4 : ↑ v21 ↑ c4,1 · v
(1)
1 5 : ↑ v22 ↑ c5,2 · v

(1)
2

6 : ↑ v3 + v4 ↑ c6,3 · v
(1)
3 + c6,4 · v

(1)
4

7 : ↑ v6 + v5 ↑ c7,6 · v
(1)
6 + c7,5 · v

(1)
5

8 : ↑ v27 ↑ c8,7 · v
(1)
7

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

Figure 1.4: Tangent-linear DAG of the given implementation of y =
(

∑n−1
i=0 x2

i

)2

for n = 3

Example 3 For n = 3 the tangent-linear SAC of the given implementation of (1.1) becomes

v
(1)
0 = x

(1)
0 ; v0 = x0

v
(1)
1 = x

(1)
1 ; v1 = x1

v
(1)
2 = x

(1)
2 ; v2 = x2

c3,0 = 2 · v0; v
(1)
3 = c3,0 · v

(1)
0 ; v3 = v20

c4,1 = 2 · v1; v
(1)
4 = c4,1 · v

(1)
1 ; v4 = v21

c5,2 = 2 · v2; v
(1)
5 = c5,2 · v

(1)
2 ; v5 = v22

c6,3 = 1; c6,4 = 1; v
(1)
6 = c6,3 · v

(1)
3 + c6,4 · v

(1)
4 ; v6 = v3 + v4

c7,6 = 1; c7,5 = 1; v
(1)
7 = c7,6 · v

(1)
6 + c7,5 · v

(1)
5 ; v7 = v6 + v5

c8,7 = 2 · v7; v
(1)
8 = c8,7 · v

(1)
7 ; v8 = v27

y(1) = v
(1)
8 ; y = v8 .

The corresponding tangent-linear DAG is shown in Figure 1.4. Both the SAC variables’ values
and their directional derivatives can be computed forward during the evaluation of the augmented
(with local partial derivatives and tangent-linear statements) numerical routine. The data flow of
the original routine is preserved.

An implementation of tangent-linear mode AD by overloading yields the following sequence of

STCE
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computations:

(v0, v
(1)
0 ) = (x0, x

(1)
0 )

(v1, v
(1)
1 ) = (x1, x

(1)
1 )

(v2, v
(1)
2 ) = (x2, x

(1)
2 )

(v3, v
(1)
3 ) = (v20 , 2 · v

(1)
0 )

(v4, v
(1)
4 ) = (v21 , 2 · v

(1)
1 )

(v5, v
(1)
5 ) = (v22 , 2 · v

(1)
2 )

(v6, v
(1)
6 ) = (v3 + v4, v

(1)
3 + v

(1)
4 )

(v7, v
(1)
7 ) = (v6 + v5, v

(1)
6 + v

(1)
5 )

(v8, v
(1)
8 ) = (v27 , 2 · v

(1)
7 )

(y, y(1)) = (v8, v
(1)
8 ) .

The gradient of the dependent output y ≡ v8 with respect to the independent input x ≡ (v0, v1, v2)
T

can be computed by letting x(1) ≡ (v
(1)
0 , v

(1)
1 , v

(1)
2 )T range over the Cartesian basis vectors in R

3

yielding

∇f(x) =





4 · v7 · v0
4 · v7 · v1
4 · v7 · v2



 .

Adjoint Code An adjoint code propagates adjoints v(1)j of all intermediate variables vj (inner
products of ∇vj

f(x) with y(1)) for j = n+ p+m− 1, . . . , 0, that is, in reverse order with respect
to the original data flow. In the adjoint SAC the generation of the SAC is followed by the use of
the (nonlinearly used) intermediate values for the computation of the local partial derivatives of
the elemental functions as in Equation (1.5):

for j = n, . . . ,n+ p+m− 1

vj = ϕj(vi)i≺j

for j = n, . . . ,n+ p− 1

v(1)j = 0

for k = n+ p+m− 1, . . . , n

for j : j ≺ k

v(1)j = v(1)j +
∂ϕk ((vi)i≺k)

∂vj
· v(1)k = ck,j · v(1)k .

(1.5)

This incremental adjoint mode distributes in its reverse section the scaled contributions of the
gradients of all elemental functions to the adjoints of their arguments. Adjoints of intermediate
variables are initialized to zero. The values of nonlinearly used SAC variables need to be recorded
for random access within the reverse section. Solutions to the underlying DAG Reversal prob-
lem [3] store these values if sufficient persistent memory is available. Otherwise, checkpointing
techniques store only selected values in order to recompute the remaining required values. Consid-
erable insight into the given program’s structure and a deep understanding of adjoint mode AD in
general are crucial prerequisites for the construction of a robust and efficient practical solution to
the DAG Reversal problem. Throughout this introductory chapter we assume that the memory
requirement of the given adjoint code does not exceed the available resources.

Implementation of adjoint mode AD by overloading replaces all active floating-point variables vj
with a pair (vj , j) that consists of the original value and its associated SAC index. All arithmetic

STCE
Software and Tools for Computational Engineering @ RWTH Aachen University

The Numerical Algorithms Group Ltd.



Getting started with dco 0.9 and dcc 0.9 Introduction to Algorithmic Differentiation 15

operators and intrinsic functions are overloaded to record ϕj , vj , and {i : i ≺ j} for all j =
0, . . . , n+ p+m− 1 on a tape. Adjoints are propagated by reverse interpretation of the tape.

The (transposed) Jacobian of y with respect to x can be computed by initializing x(1) to zero
followed by letting y(1) range over the Cartesian basis vectors in R

m.

Example 4 For n = 3 the adjoint SAC of the given implementation of (1.1) becomes

v0 = x0

v1 = x1

v2 = x2

v3 = v20

v4 = v21

v5 = v22

v6 = v3 + v4

v7 = v6 + v5

v8 = v27

y = v8

v(1)8 = y(1)

c8,7 = 2 · v7; v(1)7 = c8,7 · v(1)8

c7,6 = 1; v(1)6 = c7,6 · v(1)7

c7,5 = 1; v(1)5 = c7,5 · v(1)7

c6,4 = 1; v(1)4 = c6,4 · v(1)6

c6,3 = 1; v(1)3 = c6,3 · v(1)6

c5,2 = 2 · v2; v(1)2 = c5,2 · v(1)5

c4,1 = 2 · v1; v(1)1 = c4,1 · v(1)4

c3,0 = 2 · v0; v(1)0 = c3,0 · v(1)3

x(1)2 = v(1)2

x(1)1 = v(1)1

x(1)0 = v(1)0 .

The corresponding adjoint DAG is shown in Figure 1.5. All required SAC variable values are
computed during the evaluation of the SAC within the forward section of the adjoint code. Adjoints
are propagated from the outputs toward the inputs. The data flow of the original routine is reversed.
A conceptual implementation of adjoint mode AD by overloading generates the following tape:

3 : (∗, v3, {0})

4 : (∗, v4, {1})

5 : (∗, v5, {2})

6 : (+, v6, {3, 4})

7 : (+, v7, {6, 5})

8 : (∗, v8, {7})

STCE
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0 : ↑ x0 ↓ c3,0 · v(1)3

3 : ↑ v20 ↓ c6,3 · v(1)6

1 : ↑ x1 ↓ c4,1 · v(1)4 2 : ↑ x2 ↓ c5,2 · v(1)5

4 : ↑ v21 ↓ c6,4 · v(1)6 5 : ↑ v22 ↓ c7,5 · v(1)7

6 : ↑ v3 + v4 ↓ c7,6 · v(1)7

7 : ↑ v6 + v5 ↓ c8,7 · v(1)8

8 : ↑ v27 ↓ y(1)

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

Figure 1.5: Adjoint DAG of the given implementation of y =
(

∑n−1
i=0 x2

i

)2

for n = 3

Square operations are represented as unary products. Interpretation yields

v(1)7 = 2 · v7 · v(1)8

v(1)6 = v(1)7

v(1)5 = v(1)7

v(1)4 = v(1)6

v(1)3 = v(1)6

v(1)2 = 2 · v2 · v(1)5

v(1)1 = 2 · v1 · v(1)4

v(1)0 = 2 · v0 · v(1)3 .

1.2.2 Second and Higher Derivative Code

Application of Equation (1.4) to the tangent-linear and adjoint SACs yields second-order tangent-
linear and adjoint code, respectively. An implementation of second-order tangent-linear mode

AD is obtained by considering (vj , v
(1)
j ) as a pair of first-order tangent-linear variables yielding

((vj , v
(2)
j ), (v

(1)
j , v

(1,2)
j )) and by overloading all arithmetic operators and intrinsic functions for this

new quadruple based on the given first-order tangent-linear overloading library. Both the recording
and the interpretation steps in a given implementation of first-order adjoint mode AD need to be
overloaded in first-order tangent-linear mode in order to obtain second-order adjoint mode by
overloading. Similar statements apply to third- and higher-order tangent-linear and adjoint code.
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Chapter 2

AD by Overloading with dco0.9

2.1 Tangent-Linear Code by Overloading with dco 0.9

A very natural and convenient way to implement forward mode AD is by definition of an augmented
data type containing v(1) in addition to v for all variables (program variables as well as auxiliary
variables generated by the compiler). Directional derivatives are propagated by replacing all
arithmetic operations and intrinsic functions with routines for computing both the value and the
derivative. A simple type change of all active floating-point variables carrying nontrivial derivative
information to the new augmented data type is often the only source code modification if the
target programming language (such as C++) supports function and operator overloading.1 For
example, u = v · w becomes (u = v · w, u(1) = v(1) · w + v · w(1)) and u = sin(v) is modified into
(u = sin(v), u(1) = cos(v) · v(1)), where u, v, w are floating-point variables.

AD by overloading is implemented by our C++ library dco 0.9 (derivative code by overloading).
The source code is listed in Appendix A. It serves as an illustration of the concepts discussed in
Chapter 1. The production version 1.0 features a variety of advanced optimization techniques the
discussion of which is beyond the scope of this introductory text. Its performance exceeds that of
version 0.9 significantly.

For tangent-linear scalar mode AD, a class dco t1s type (dco’s tangent-linear 1st-order scalar
type) is defined with double precision members v (value) and t (tangent).

class dco t1 s type {
public :

double v ;
double t ;
d co t1 s type ( const double&) ;
dco t1 s type ( ) ;
d co t1 s type& operator=(const dco t1 s type&) ;

} ;

A special constructor (dco t1s type(const double&)) converts passive into active variables at run
time. The provided standard constructor simply initializes the value and derivative components
to zero. The assignment operator returns a copy of the right-hand side unless it is aliased with
the left-hand side of the assignment.

d co t1 s type& dco t1 s type : : operator=(const dco t1 s type& x) {
i f ( this==&x) return ∗ this ;
v=x . v ; t=x . t ;

1More substantial modifications may become necessary in languages that do not have full support for object-

oriented programming.
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return ∗ this ;
}

Implementations of all relevant arithmetic operators and intrinsic functions are required, for ex-
ample,

d co t1 s type operator ∗( const dco t1 s type& x1 ,
const dco t1 s type& x2 ) {

dco t1 s type tmp ;
tmp . v=x1 . v∗x2 . v ;
tmp . t=x1 . t ∗x2 . v+x1 . v∗x2 . t ;
return tmp ;

}

and

dco t1 s type s i n ( const dco t1 s type& x) {
dco t1 s type tmp ;
tmp . v=s i n (x . v ) ;
tmp . t=cos ( x . v ) ∗x . t ;
return tmp ;

}

Refer to Appendix A.1 for a more complete version of the source code. The driver program in List-
ing 2.1 uses the implementation of class dco t1s type to compute the gradient of Equation (1.1)
for n = 4 at the point xi = 1 for i = 0, . . . , 3. Four evaluations of the tangent-linear routine

void f ( d co t1 s type ∗x , dco t1 s type &y)

are performed with the derivative components of x initialized to the Cartesian basis vectors in R
4.

Listing 2.1: Driver for Tangent-Linear Code by Overloading

#include<iostream>

using namespace std ;
#include ” dco t1 s type . hpp”

const int n=4;

void f ( d co t1 s type ∗x , dco t1 s type &y) {
y=0;
for ( int i =0; i<n ; i++) y=y+x [ i ]∗ x [ i ] ;
y=y∗y ;

}

int main ( ) {
dco t1 s type x [ n ] , y ;
for ( int i =0; i<n ; i++) x [ i ]=1
for ( int i =0; i<n ; i++) {

x [ i ] . t=1;
f (x , y ) ;
x [ i ] . t =0;
cout << y . t << endl ;

}
return 0 ;

}
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Let class dco t1s type be defined in the C++ source files dco t1s type.hpp and dco t1s type.cpp,
and let the driver program be stored as main.cpp. An executable is built by calling

$(CPPC) -c dco_t1s_type.cpp

$(CPPC) -c main.cpp

$(CPPL) -o main dco_t1s_type.o main.o

where $(CPPC) and $(CPPL) should be replaced by a C++ compiler and a corresponding linker,
respectively (for example, g++).

2.2 Adjoint Code by Overloading with dco 0.9

The favored approach to a run-time version of the adjoint code is to build a tape (an augmented
representation of the DAG) by overloading, followed by an interpretative reverse propagation of
adjoints through the tape. In our case the tape is a statically allocated array of tape entries
addressed by their position in the array. Each tape entry contains a code for the associated
operation (oc), addresses of the operation’s first and optional second arguments (arg1 and arg2),
and two floating-point variables holding the current value (v) and the adjoint (a), respectively.
The constructor marks the operation code and both arguments as undefined and it initializes both
the value and the adjoint to zero.

class dco a1 s t ape en t ry {
public :

int oc , arg1 , arg2 ;
double v , a ;
d co a1 s t ape en t ry ( ) :

oc (DCO A1S UNDEF) , arg1 (DCO A1S UNDEF) ,
arg2 (DCO A1S UNDEF) , v (0 ) , a (0 )

{} ;
} ;

As in forward mode, an augmented data type is defined to replace the type of every active floating-
point variable. The corresponding class dco a1s type (dco’s adjoint 1st-order scalar type) contains
the virtual address va (position in tape) of the current variable in addition to its value v.

class dco a1s type {
public :

int va ;
double v ;
dco a1s type ( ) : va (DCO A1S UNDEF) , v (0 ) {} ;
dco a1s type ( const double&) ;
dco a1s type& operator=(const dco a1s type&) ;

} ;

Special constructors and a custom assignment operator are required. The latter either handles a
self-assignment or generates a new tape entry with corresponding operation code and with copies
of the right-hand side’s value and virtual address. A global virtual address counter dco a1s vac is
used to populate the tape.

dco a1s type& dco a1s type : : operator=(const dco a1s type& x) {
i f ( this==&x) return ∗ this ;
d co a1s tape [ dco a1s vac ] . oc=DCO A1S ASG;
dco a1s tape [ dco a1s vac ] . v=v=x . v ;
dco a1s tape [ dco a1s vac ] . arg1=x . va ;
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va=dco a1s vac++;
return ∗ this ;

}

Passive values and constants are activated by a special constructor:

dco a1s type : : dco a1s type ( const double& x) : v ( x ) {
dco a1s tape [ dco a1s vac ] . oc=DCO A1S CONST;
dco a1s tape [ dco a1s vac ] . v=x ;
va=dco a1s vac++;

} ;

All arithmetic operators and intrinsic functions make similar recordings on the tape, for example,

dco a1s type operator ∗( const dco a1s type& x1 , const dco a1s type& x2 )
{

dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S MUL;
dco a1s tape [ dco a1s vac ] . arg1=x1 . va ;
dco a1s tape [ dco a1s vac ] . arg2=x2 . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=x1 . v∗x2 . v ;
tmp . va=dco a1s vac++;
return tmp ;

}

and

dco a1s type s i n ( const dco a1s type& x) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S SIN ;
dco a1s tape [ dco a1s vac ] . arg1=x . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=s i n (x . v ) ;
tmp . va=dco a1s vac++;
return tmp ;

} .

The operation codes are implemented as macros (e.g., DCO A1S ASG, DCO A1S MUL, and
DCO A1S SIN) to be replaced with some unique number by the C preprocessor.

The tape is constructed during a single execution of the overloaded original code; this is followed
by an interpretation step for propagating adjoints through the tape in reverse order.

void d c o a 1 s i n t e r p r e t t a p e ( ) {
for ( int i=dco a1s vac ; i>=0; i−−) {

switch ( dco a1s tape [ i ] . oc ) {
case DCO A1S ASG : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ i ] . a ;
break ;

}
case DCO A1S MUL : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=
dco a1s tape [ dco a1s tape [ i ] . arg2 ] . v∗ dco a1s tape [ i ] . a ;

dco a1s tape [ dco a1s tape [ i ] . arg2 ] . a+=
dco a1s tape [ dco a1s tape [ i ] . arg1 ] . v∗ dco a1s tape [ i ] . a ;

break ;
}
case DCO A1S SIN : {
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Tape: Interpreted Tape:

0: [ 0, -1, -1, 1.0, 0.0 ]

1: [ 1, 0, -1, 1.0, 0.0 ]

2: [ 0, -1, -1, 1.0, 0.0 ]

3: [ 1, 2, -1, 1.0, 0.0 ]

4: [ 0, -1, -1, 1.0, 0.0 ]

5: [ 1, 4, -1, 1.0, 0.0 ]

6: [ 0, -1, -1, 1.0, 0.0 ]

7: [ 1, 6, -1, 1.0, 0.0 ]

8: [ 0, -1, -1, 0.0, 0.0 ]

9: [ 1, 8, -1, 0.0, 0.0 ]

10: [ 4, 1, 1, 1.0, 0.0 ]

11: [ 2, 9, 10, 1.0, 0.0 ]

12: [ 1, 11, -1, 1.0, 0.0 ]

13: [ 4, 3, 3, 1.0, 0.0 ]

14: [ 2, 12, 13, 2.0, 0.0 ]

15: [ 1, 14, -1, 2.0, 0.0 ]

16: [ 4, 5, 5, 1.0, 0.0 ]

17: [ 2, 15, 16, 3.0, 0.0 ]

18: [ 1, 17, -1, 3.0, 0.0 ]

19: [ 4, 7, 7, 1.0, 0.0 ]

20: [ 2, 18, 19, 4.0, 0.0 ]

21: [ 1, 20, -1, 4.0, 0.0 ]

22: [ 4, 21, 21, 16.0, 0.0 ]

23: [ 1, 22, -1, 16.0, 0.0 ]

[ 0, -1, -1, 1.0, 16.0 ]

[ 1, 0, -1, 1.0, 16.0 ]

[ 0, -1, -1, 1.0, 16.0 ]

[ 1, 2, -1, 1.0, 16.0 ]

[ 0, -1, -1, 1.0, 16.0 ]

[ 1, 4, -1, 1.0, 16.0 ]

[ 0, -1, -1, 1.0, 16.0 ]

[ 1, 6, -1, 1.0, 16.0 ]

[ 0, -1, -1, 0.0, 8.0 ]

[ 1, 8, -1, 0.0, 8.0 ]

[ 4, 1, 1, 1.0, 8.0 ]

[ 2, 9, 10, 1.0, 8.0 ]

[ 1, 11, -1, 1.0, 8.0 ]

[ 4, 3, 3, 1.0, 8.0 ]

[ 2, 12, 13, 2.0, 8.0 ]

[ 1, 14, -1, 2.0, 8.0 ]

[ 4, 5, 5, 1.0, 8.0 ]

[ 2, 15, 16, 3.0, 8.0 ]

[ 1, 17, -1, 3.0, 8.0 ]

[ 4, 7, 7, 1.0, 8.0 ]

[ 2, 18, 19, 4.0, 8.0 ]

[ 1, 20, -1, 4.0, 8.0 ]

[ 4, 21, 21, 16.0, 1.0 ]

[ 1, 22, -1, 16.0, 1.0 ]

(a) (b)

Figure 2.1: dco t2s a1s tape for the Computation of the Gradient of Equation (1.1) for n = 4 at
the point xi = 1 for i = 0, . . . , 3; The five columns show for each tape entry with virtual addresses
from 0 to 23 the operation code, the virtual addresses of the (up to two) arguments, the function
value, and the adjoint value, where -1 ≡ DCO A1S UNDEF in the second and third columns and
with operation codes 0 ≡ DCO A1S CONST, 1 ≡ DCO A1S ASG, 2 ≡ DCO A1S ADD, and 4 ≡
DCO A1S MUL.

d co a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=
cos ( dco a1s tape [ dco a1s tape [ i ] . arg1 ] . v )

∗ dco a1s tape [ i ] . a ;
break ;

}
. . .

}
}

}

The driver program in Listing 2.2 uses the implementation of class dco a1s type in connection with
a tape of size DCO A1S TAPE SIZE (to be replaced with an integer value by the C preprocessor).
The tape is allocated statically in dco_a1s_type.cpp and is later linked to the object code of the
driver program. The latter computes the gradient of the given implementation of Equation (1.1)
for n = 4 at the point xi = 1 for i = 0, . . . , 3. Running the augmented function

void f ( dco a1s type ∗x , dco a1s type &y)

followed by the tape interpretation yields the two tapes in Figure 2.1. Arguments are referenced
by their virtual address within the tape. For example, tape entry 11 represents the sum (oc=2)
of the two arguments represented by tape entries 9 and 10. The tape is structurally equivalent
to the DAG. The propagation of adjoints is preceeded by the initialization of the adjoint of the
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tape entry that corresponds to the dependent variable y (tape entry 23). The desired gradient is
accumulated in the adjoint components of the four tape entries 1, 3, 5, and 7.

Listing 2.2: Driver for Adjoint Code by Overloading

1 #include <iostream>

2 #include ” dco a1s type . hpp”
3 using namespace std ;
4
5 const int n=4;
6
7 extern dco a1 s t ape en t ry dco a1s tape [DCO A1S TAPE SIZE ] ;
8
9 void f ( dco a1s type ∗x , dco a1s type &y) {

10 y=0;
11 for ( int i =0; i<n ; i++) y=y+x [ i ]∗ x [ i ] ;
12 y=y∗y ;
13 }
14
15 int main ( ) {
16 dco a1s type x [ n ] , y ;
17 for ( int i =0; i<n ; i++) x [ i ]=1;
18 f (x , y ) ;
19 dco a1s tape [ y . va ] . a=1;
20 d c o a 1 s i n t e r p r e t t a p e ( ) ;
21 for ( int i =0; i<n ; i++)
22 cout << i << ”\ t ” << dco a1s tape [ x [ i ] . va ] . a << endl ;
23 return 0 ;
24 }

Tape entries 0–7 correspond to the initialization of the x[ j ] in line 19. The initialization of y
inside of f (line 10) yields tape entries 8 and 9. The loop in line 11 produces the following twelve
(four triplets) entries 10–21. Squaring y in line 12 adds the last two tape entries 22 and 23.

The tape interpreter implements Equation (1.5) without modification. Starting from tape entry
23, the adjoint value 1 of the dependent variable y is propagated to the single argument of the
underlying assignment. The adjoint of tape entry 22 is set to 1 as the local partial derivative
of an assignment is equal to 1. Tape entry 22 represents the multiplication y=y∗y in line 12 of
Listing 2.2, where the value of y on the right-hand side of the assignment is represented by tape
entry 21. The value of the local partial derivative (2∗y=2*4=8) is multiplied with the adjoint of
tape entry 22, followed by incrementing the adjoint of tape entry 21, whose initial value is equal
to 0. This process continues until all tape entries have been visited. The gradient can be retrieved
from tape entries 1, 3, 5, and 7. If none of the independent variables is overwritten, then their va
components contain the correct virtual addresses after calling the overloaded version of f. This
is the case in the given example. Hence, lines 19–22 deliver the correct gradient in Listing 2.2.
Otherwise, the virtual addresses of the independent variables need to be stored in order to ensure
a correct retrieval of the gradient. Listings of the full source code that implements adjoint mode
AD by overloading can be found in Appendix A.2. If both class dco a1s type and the tape are
implemented in the files dco a1s type.hpp and dco a1s type.cpp, and if the driver program is
stored as main.cpp, then the build process is similar to that in Section 2.1.
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Chapter 3

AD by Source Transformation

with dcc0.9

3.1 Functionality

dcc 0.9 generates jth-order derivative code by arbitrary combinations of tangent-linear or adjoint
modes. It takes a possibly preprocessed (j−1)th-order derivative code generated by itself as input.
The original (0th-order derivative) code is expected to be written in a well-defined subset of C++
that is intentionally kept small. Still the accepted syntax and semantics are rich enough to be
able to illustrate the topics discussed in [2] See Appendix B for a summary of the syntax accepted
by dcc 0.9.

dcc 0.9 operates on implementations of multivariate vector functions

F : Rn → R
m, y = F (x) ,

as subroutines

void f ( int n , int m, double ∗x , double ∗y ) .

Its results vary depending on whether certain inputs and outputs are aliased (represented by the
same program variable) or not. Hence, the two cases

y = F (x) and

(

y

z

)

= F (x, z)

(x and y unaliased) are considered separately in [2]. For y = F (x) and x and y not aliased the
generated derivative code behaves similar to what has been presented Chapter 1.

3.1.1 Tangent-Linear Code by dcc 0.9

The tangent-linear version

F (1) : Rn × R
n → R

m × R
m :

(

y

y(1)

)

= F (1)(x,x(1))

of the given implementation of y = F (x) computes

y(1) = ∇F (x) · x(1)

y = F (x) .

For a given implementation of F as
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void f ( int n , int m, double ∗x , double ∗y ) ,

dcc 0.9 generates a tangent-linear subroutine with the following signature:

void t 1 f ( int n , int m, double ∗x , double ∗ t1 x ,
double ∗y , double ∗ t1 y ) .

All superscripts of the tangent-linear subroutine and variable names are replaced with the prefix
t1 , that is, v(1) ≡ t1 v.

3.1.2 Adjoint Code by dcc 0.9

Due to missing data flow analysis, dcc 0.9 cannot decide if a value that is overwritten within the
forward section of the adjoint code is required by the reverse section. Conservatively, it stores
all overwritten values on appropriately typed required data stacks. Hence, the straightforward
application of reverse mode with data flow reversal stack s to y = F (x) yields

s[0] = y; y = F (x)

y = s[0]; x(1) = x(1) +∇F (x)T · y(1)

y(1) = 0 .

The adjoint code generated by dcc 0.9 does not return the correct function value y of F. It rather
restores the (possibly undefined) input value of y. To return the correct function value, code
for storing a result checkpoint r must be provided by the user to save the value of y after the
augmented forward sweep followed by recovering it after the reverse sweep:

s[0] = y; y = F (x)

r[0] = y

y = s[0]; x(1) = x(1) +∇F (x)T · y(1)

y(1) = 0

y = r[0] .

Result checkpointing in dcc 0.9 will be discussed in further detail in Section 3.4.2. Hence, the
adjoint

F(1) : R
n × R

n × R
m → R

n × R
m × R

m :




x(1)

y

y(1)



 = F(1)(x,x(1),y(1))

of an implementation of y = F (x) computes

x(1) = x(1) +∇F (x)T · y(1)

y = F (x)

y(1) = 0 .

For the given implementation of F as

void f ( int n , int m, double ∗x , double ∗y ) ,

dcc 0.9 generates an adjoint subroutine with the following signature:

void a1 f ( int a1 mode , int n , int m,
double ∗x , double ∗a1 x ,
double ∗y , double ∗ a1 y ) .
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All subscripts of the adjoint subroutine and variable names are replaced with the prefix a1 , that
is, v(1) ≡ a1 v. The integer parameter a1 mode selects between various modes required in the
context of interprocedural adjoint code. Details will be discussed in Section 3.3.

3.2 Installation of dcc 0.9

The compiler has been tested on various Linux platforms. Its installation files come as a compressed
tar archive file dcc-0.9.tar.gz. It is unpacked into a subdirectory ./dcc-0.9, e.g., by running

tar -xzvf dcc-0.9.tar.gz .

To build the compiler enter the subdirectory ./dcc-0.9 and type

./configure --prefix=$(INSTALL_DIR)

make

make check

make install

The executable dcc can be found in $(INSTALL_DIR)/bin.

make check runs the compiler in both supported modes (tangent-linear and adjoint) on test input
code stored in subdirectories of ./dcc-0.9/src/tests. The generated output is verified against
a reference. An error message is generated for anything but identical matches.

Precompiled Windows binaries are available on www.siam.org/se24.

3.3 Use of dcc 0.9

Let the original source code reside in a file named f.c in subdirectory $(SRC_DIR) and let the
top-level directory of the dcc 0.9 installation be $(DCC_DIR).

A first-order tangent-linear code is built in $(SRC_DIR) by typing

$(DCC_DIR)/dcc f.c 1 1

The name of the source file f .c is followed by two command-line parameters for setting tangent-
linear mode (1) and the order of the derivative (1). The generated code is stored in a file named
t1 f.c.

A first-order adjoint code is built in $(SRC_DIR) by typing

$(DCC_DIR)/dcc f.c 2 1

The first-order (third command-line parameter set to 1) adjoint (second command-line parameter
set to 2) version of the code in f .c is stored in a file named a1 f.c.

Higher-order derivative code can be obtained by reapplying dcc 0.9 to a previously generated
derivative code in either tangent-linear or adjoint mode. Reapplication of dcc 0.9 to a previously
generated adjoint code a1 f.c requires running the C preprocessor on a1 f.c first as described in
[2]. For example, the second-order adjoint code t2 a1 f.c results from running

$(DCC_DIR)/dcc a1_f.c 1 2

on the preprocessed version of a1 f.c. A third-order derivative code can be generated, for exam-
ple, by running
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$(DCC_DIR)/dcc t2_a1_f.c 2 3

The result is stored in a3 t2 a1 f.c. While reapplication of dcc 0.9 in adjoint mode to a previ-
ously generated first- or higher-order adjoint model is feasible, this feature is less likely to be used
in practice for reasons outlined in [2]. A third-order adjoint model is best generated by running

$(DCC_DIR)/dcc t2_a1_f.c 1 3 .

3.4 Intraprocedural Derivative Code by dcc 0.9

Consider a file f.c with the following content

// a very s imple input code
void f (double& x , double& y) {

y=s in (x ) ;
}

dcc 0.9 expects all double parameters to be passed by reference. Call by value is supported
for integer parameters only. Single-line comments are not preserved in the output code. We
use this trivial input code to take a closer look at the result of the semantic transformations
performed by dcc 0.9. Larger inputs result in tangent-linear and adjoint code whose listing
becomes unreasonable due to excessive length.

3.4.1 Tangent-Linear Code

The name t1 f of the tangent-linear routine is generated by prepending the prefix t1 to the name
of the original routine. The original parameter list is augmented with dummy variables holding
directional derivatives of all double parameters. Both x and y receive respective tangent-linear
versions t1 x and t1 y in line 1 of the following code listing.

1 void t 1 f (double& x , double& t1 x , double& y , double& t1 y )
2 {
3 double v1 0=0;
4 double t 1 v1 0 =0;
5 double v1 1=0;
6 double t 1 v1 1 =0;
7 t1 v1 0=t1 x ;
8 v1 0=x ;
9 t1 v1 1=cos ( v1 0 ) ∗ t 1 v1 0 ;

10 v1 1=s i n ( v1 0 ) ;
11 t1 y=t1 v1 1 ;
12 y=v1 1 ;
13 }

The original assignment is decomposed into the SAC (single assignment code; see Chapter 1)
listed in lines 8, 10, and 12. Two auxiliary SAC variables v1 0 and v1 1 are declared in lines 3 and
5. dcc 0.9 expects a separate declaration for each variable as well as its initialization with some
constant (e.g. 0). Tangent-linear versions of both auxiliary variables are declared and initialized
in lines 4 and 6. All three SAC statements are augmented with local tangent-linear models (lines
7, 9, and 11).

Auxiliary variable names are built from the base string v by appending the order of differentiation
(1) and a unique counter (0, 1, . . .) separated by an underscore. Potential name clashes with
variables present in the original source code could be avoided by a more sophisticated naming
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strategy. dcc 0.9 does not support such a mechanism. Its source code would need to be edited
in order to replace the base string v with some alternative. The native C++ compiler can be
expected to eliminate most auxiliary variables as the result of copy propagation.

A driver program/function must be supplied by the user, for example,

1 #include<f stream>

2 #include<cmath>
3 using namespace std ;
4
5 #include ” t 1 f . c”
6
7 int main ( ) {
8 ofstream t1 out ( ” t1 . out ” ) ;
9 double x=1, t1 x=1;

10 double y , t1 y ;
11 t 1 f (x , t1 x , y , t1 y ) ;
12 t1 out << y << ” ” << t1 y << endl ;
13 return 0 ;
14 }

It computes the partial derivative of the output y with respect to the input x at point x=1.
Relevant parts of the C++ standard library are used for file i/o (fstream) and to provide an
implementation for the intrinsic sine function (cmath). Global use of the std namespace is crucial
as dcc 0.9 does neither accept nor generate namespace prefixes such as std :: . The file t1 f .c
is included into the driver in line 5 in order to make these preprocessor settings applicable to
the tangent-linear output of dcc 0.9. Both the values of x and of its directional derivative t1 x
are set to one at the time of their declaration in lines 9 and 10 followed by declarations of the
outputs y and t1 y and the call of the tangent-linear function t1 f in lines 11 and 12, respectively.
The results are written into the file t1.out for later validation. Optimistically, zero is returned to
indicate an error-free execution of the driver program.

3.4.2 Adjoint Code

The adjoint routine a1 f has been edited slightly by removing parts without relevance to the in-
traprocedural case. Its signature is left unchanged despite the fact that the integer input parameter
a1 mode could also be omitted in this situation.

1 int cs [ 1 0 ] ;
2 int c s c =0;
3 double f d s [ 1 0 ] ;
4 int f d s c =0;
5 int i d s [ 1 0 ] ;
6 int i d s c =0;
7 #include ” de c l a r e ch e ckpo i n t s . i n c ”
8
9 void a1 f ( int a1 mode , double& x , double& a1 x ,

10 double& y , double& a1 y )
11 {
12 double v1 0=0;
13 double a1 v1 0=0;
14 double v1 1=0;
15 double a1 v1 1=0;
16 i f ( a1 mode==1) {
17 cs [ c s c ]=0; c s c=csc +1;
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18 fd s [ f d s c ]=y ; f d s c=fd s c +1; y=s i n (x ) ;
19 #include ” f s t o r e r e s u l t s . i n c ”
20 while ( csc >0) {
21 csc=csc −1;
22 i f ( cs [ c s c ]==0) {
23 fd s c=fdsc −1; y=fd s [ f d s c ] ;
24 v1 0=x ;
25 v1 1=s i n ( v1 0 ) ;
26 a1 v1 1=a1 y ; a1 y=0;
27 a1 v1 0=cos ( v1 0 ) ∗ a1 v1 1 ;
28 a1 x=a1 x+a1 v1 0 ;
29 }
30 }
31 #include ” f r e s t o r e r e s u l t s . i n c ”
32 }
33 }

The adjoint function needs to be called in first-order adjoint calling mode a1 mode=1 to invoke
the propagation of adjoints from the adjoint output a1 y to the adjoint input a1 x. Further calling
modes will be added when considering call tree reversal in the interprocedural case in Section 3.5.

An augmented version of the original code enumerates basic blocks in the order of their execution
(line 17; ref. Adjoint Code Generation Rule 5 in [2]) and it saves left-hand sides of assignments
before they get overwritten (line 18; ref. Adjoint Code Generation Rule 3 in [2]). Three global
stacks are declared for this purpose with default sizes set to 10 to be adapted by the user. The
sizes of both the control flow stack cs and the required floating-point data stack fds can be reduced
to 1 in the given example. Counter variables csc and fdsc are declared as references to the tops
of the respective stacks. Missing integer assignments make the required integer data stack ids in
line 5 as well as its counter variable idsc in line 6 obsolete. Code for allocating memory required
for the potential storage of argument and/or result checkpoints needs to be provided by the user
in a file named declare_checkpoints.inc. In dcc 0.9, all memory required for the data-flow
reversal is allocated globally. Related issues such as thread safety of the generated adjoint code
are the subject of ongoing research and development.

The reverse section of the adjoint code (lines 20 to 30) runs the adjoint basic blocks in reverse
order driven by their indices retrieved one by one from the top of the control stack (lines 20 to 22).
Processing of the original assignments within a basic block in reverse order starts with the recovery
of the original value of the variable on the left-hand side of the assignment (line 23). An incomplete
version of the assignment’s SAC (without storage of the value of the right-hand-side expression in
the variable on the left-hand side of the original assignment; lines 24 and 25; ref. Adjoint Code
Generation Rule 4 in [2]) is built to ensure availability of all arguments of local partial derivatives
potentially needed by the adjoint SAC (lines 26 to 28). The corresponding auxiliary SAC variables
and their adjoints are declared in lines 12 to 15 (ref. Adjoint Code Generation Rule 1 in [2]). dcc
0.9 expects all local variables to be initialized, e.g. to zero. Adjoints of variables present in
the original code are incremented (line 28) while adjoints of (single-use) auxiliary variables are
overwritten (lines 26 and 27). Adjoints of left-hand sides of assignments are set to zero after their
use by the corresponding adjoint SAC statement (line 26; ref. Adjoint Code Generation Rule 2 in
[2]).

The user is given the opportunity to ensure the return of the correct original function value through
provision of three appropriate files to be included into the adjoint code. By default, the data flow
reversal mechanism restores the input values of all parameters. For example, one could store y

re scp=y ;

in f_store_results.inc and recover it
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y=rescp ;

in f_restore_results.inc in addition to the declaration and initialization of the checkpoint

double r e s cp=0;

in declare_checkpoints.inc. Automation of this kind of checkpointing is impossible if arrays
are passed as pointer parameters due to missing size information in C/C++.

The determination of sufficiently large stack sizes may turn out to be not entirely trivial. For
given values of the inputs, one could check the maxima of the stack counters csc, fdsc, and idsc
by insertion of

cout << c s c << ” ” << f d s c << ” ” << i d s << endl ;

in between the augmented forward and reverse sections of the adjoint code (right before or after
line 19).

Again, a driver program/function needs to be supplied by the user. For our simple example, it
looks very similar to the tangent-linear driver discussed in Section 3.4.1.

1 #include<f stream>

2 #include<cmath>
3 using namespace std ;
4
5 #include ” a1 f . c”
6
7 int main ( ) {
8 ofstream a1 out ( ”a1 . out” ) ;
9 double x=1, a1 x=0;

10 double y , a1 y=1;
11 a1 f (1 , x , a1 x , y , a1 y ) ;
12 a1 out << y << ” ” << a1 x << endl ;
13 return 0 ;
14 }

To compute the partial derivative of y with respect to x at point x=1, the value a1 y of the
adjoint of the output is set to one while the adjoint a1 x of the input needs to be initialized to
zero. The correct calling mode (1) is passed to the adjoint function a1 f in line 11. In line 12, the
result a1 x is written to a file for later validation. Compilation of this driver followed by linking
with the C++ standard library yields a program whose execution generates the same output as
the tangent-linear driver in Section 3.4.1. A typical correctness check comes in the form of a
comparison of the results obtained from the tangent-linear and adjoint code, for example running

diff t1.out a1.out .

3.5 Interprocedural Derivative Code by dcc 0.9

For the generation of interprocedural derivative code, dcc 0.9 expects all subroutines to be pro-
vided in a single file, for example,

void g (double& x) {
x=s in (x ) ;

}

void f (double& x , double& y) {
g (x ) ;
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y=sq r t ( x ) ;
}

This code implements a univariate vector function x 7→ (x, y).

3.5.1 Tangent-Linear Code

The generated tangent-linear code does not yield any surprises.

1 void t1 g (double& x , double& t1 x )
2 {
3 double v1 0=0;
4 double t 1 v1 0 =0;
5 double v1 1=0;
6 double t 1 v1 1 =0;
7 t1 v1 0=t1 x ;
8 v1 0=x ;
9 t1 v1 1=cos ( v1 0 ) ∗ t 1 v1 0 ;

10 v1 1=s i n ( v1 0 ) ;
11 t1 x=t1 v1 1 ;
12 x=v1 1 ;
13 }
14 void t 1 f (double& x , double& t1 x ,
15 double& y , double& t1 y )
16 {
17 double v1 0=0;
18 double t 1 v1 0 =0;
19 double v1 1=0;
20 double t 1 v1 1 =0;
21 t1 g (x , t1 x ) ;
22 t1 v1 0=t1 x ;
23 v1 0=x ;
24 t1 v1 1 =1/(2∗ s q r t ( v1 0 ) ) ∗ t 1 v1 0 ;
25 v1 1=sq r t ( v1 0 ) ;
26 t1 y=t1 v1 1 ;
27 y=v1 1 ;
28 }

The original call of g is replaced by its tangent-linear version t1 g in line 21. Copy propagation
(elimination of auxiliary variables) and the elimination of common subexpressions (for example,
sqrt(v1 0) in lines 24 and 25) is again left to the native C++ compiler.

3.5.2 Adjoint Code

dcc 0.9 generates fully joint call tree reversals; see [2] and [1] for details. Due to the considerable
length of the automatically generated interprocedural adjoint code, we split the listing into three
parts.

The global declarations of required data and control stacks are followed by two #include C-
preprocessor directives in lines 7 and 8 of the following listing.

1 int cs [ 1 0 ] ;
2 int c s c =0;
3 double f d s [ 1 0 ] ;
4 int f d s c =0;
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5 int i d s [ 1 0 ] ;
6 int i d s c =0;
7 #include ” de c l a r e ch e ckpo i n t s . i n c ”
8 #include ” f . c”

It is the user’s responsibility to declare sufficiently large stacks. Moreover, name clashes with
variables declared in the original program must be avoided. The preset sizes (here 10) need to be
adapted accordingly. The file declare_checkpoints.inc is extended with variable declarations
required for the implementation of the subroutine argument checkpointing scheme in joint call
tree reversal mode. For example,

double r e s cp=0;
double argcp=0;

allocates memory for storing the input value x of g that is needed for running g “out of context” in
joint call tree reversal mode. As in Section 3.4.2 these declarations need to be supplied by the user
since the problem of generating correct checkpoints for C++-code is statically undecidable. Sizes
of vector arguments passed as pointers are generally unknown due to missing array descriptors.
While the scalar case could be treated automatically it is probably not worth the effort since
in numerical simulation code handled by dcc 0.9 most subroutine arguments are arrays. The
inclusion of the original code in line 8 is necessary as g is called within the augmented forward
section of the adjoint version a1 f of f.

Adjoint subroutines can be called in three modes selected by setting the integer parameter a1 mode
. The prefix a1 indicates the order of differentiation. For example, if a third-order adjoint code is
generated by reverse-over-forward-over-forward mode, then the name of this parameter becomes
a3 mode. Let us first take a closer look at a1 g.

1 void a1 g ( int a1 mode , double& x , double& a1 x ) {
2 double v1 0=0;
3 double a1 v1 0=0;
4 double v1 1=0;
5 double a1 v1 1=0;
6 int s av e c s c =0;
7 s av e c s c=csc ;
8 i f ( a1 mode==1) {
9 // augmented forward s e c t i on

10 cs [ c s c ]=0; c s c=csc +1;
11 fd s [ f d s c ]=x ; f d s c=fd s c +1; x=s i n (x ) ;
12 #include ” g s t o r e r e s u l t s . i n c ”
13 // r eve r s e s e c t i on
14 while ( csc>s av e c s c ) {
15 csc=csc −1;
16 i f ( cs [ c s c ]==0) {
17 fd s c=fdsc −1; x=fd s [ f d s c ] ;
18 v1 0=x ;
19 v1 1=s i n ( v1 0 ) ;
20 a1 v1 1=a1 x ; a1 x=0;
21 a1 v1 0=cos ( v1 0 ) ∗ a1 v1 1 ;
22 a1 x=a1 x+a1 v1 0 ;
23 }
24 }
25 #include ” g r e s t o r e r e s u l t s . i n c ”
26 }
27 i f ( a1 mode==2) {
28 #include ” g s t o r e i n pu t s . i nc ”
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29 a1 mode=a1 mode ;
30 }
31 i f ( a1 mode==3) {
32 #include ” g r e s t o r e i n p u t s . i nc ”
33 a1 mode=a1 mode ;
34 }
35 }

The three modes are represented by three if statements in lines 8, 27, and 31. If the adjoint
subroutine is called with a1 mode set equal to one, then an adjoint code that is similar to the
one discussed in Section 3.4.2 is executed. Note that the control flow reversal uses an additional
auxiliary variable save csc to store the state of the control stack counter csc in line 7 followed by
stepping through the local csc− save csc adjoint basic blocks in lines 14–24. Code for storage and
recovery of g’s results needs to be supplied by the user.

The two remaining adjoint calling modes invoke user-supplied code for storage (a1 mode==2)
and recovery (a1 mode==3) of the subroutine’s inputs. Two dummy assignments are generated
in lines 29 and 33 to ensure correct syntax of the adjoint code even if no argument checkpointing
code is provided, that is, if both files g_store_inputs.inc and g_restore_inputs.inc are left
empty. These dummy assignments are eliminated by the optimizing native C++ compiler. In the
current example the input value x of g is saved by

argcp=x

and restored by

x=argcp .

Not saving x results in incorrect adjoints as its input value is overwritten by the call of g in line
13 of the following listing of a1 f. The adjoint a1 g would hence be called with the wrong input
value for x in line 27.

1 void a1 f ( int a1 mode , double& x , double& a1 x ,
2 double& y , double& a1 y ) {
3 double v1 0=0;
4 double a1 v1 0=0;
5 double v1 1=0;
6 double a1 v1 1=0;
7 int s av e c s c =0;
8 s av e c s c=csc ;
9 i f ( a1 mode==1) {

10 // augmented forward s e c t i on
11 cs [ c s c ]=0; c s c=csc +1;
12 a1 g (2 , x , a1 x ) ;
13 g (x ) ;
14 fd s [ f d s c ]=y ; f d s c=fd s c +1; y=sq r t ( x ) ;
15 #include ” f s t o r e r e s u l t s . i n c ”
16 // r eve r s e s e c t i on
17 while ( csc>s av e c s c ) {
18 csc=csc −1;
19 i f ( cs [ c s c ]==0) {
20 fd s c=fdsc −1; y=fd s [ f d s c ] ;
21 v1 0=x ;
22 v1 1=sq r t ( v1 0 ) ;
23 a1 v1 1=a1 y ; a1 y=0;
24 a1 v1 0=1/(2∗ s q r t ( v1 0 ) ) ∗ a1 v1 1 ;
25 a1 x=a1 x+a1 v1 0 ;
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26 a1 g (3 , x , a1 x ) ;
27 a1 g (1 , x , a1 x ) ;
28 }
29 }
30 #include ” f r e s t o r e r e s u l t s . i n c ”
31 }
32 i f ( a1 mode==2) {
33 #include ” f s t o r e i n p u t s . i nc ”
34 a1 mode=a1 mode ;
35 }
36 i f ( a1 mode==3) {
37 #include ” f r e s t o r e i n p u t s . i nc ”
38 a1 mode=a1 mode ;
39 }
40 }

Apart from the treatment of the subroutine call in lines 12, 13, 26, and 27 the adjoint version of
f is structurally similar to a1 g. Subroutine calls are preceded by the storage of their argument
checkpoints within the augmented forward section (lines 12 and 13). In the reverse section, the
correct arguments are restored (line 26) before the adjoint subroutine is executed (line 27). The
correct result y of f is preserved by the user-provided code for storing

re scp=y

in f_store_results.inc and restoring

y=rescp

in f_restore_results.inc. Arguments of f need not be stored and recovered as f is never
executed “out of context.”
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Appendix A

dco0.9 Source

We present parts of the dco 0.9 source code implementing the scalar tangent-linear (A.1) and
adjoint (A.2), modes of AD. Listings are restricted to a few selected arithmetic operators and
intrinsic functions. Extensions are reasonably straightforward. Refer to Sections 2.1 (for tangent-
linear mode) and 2.2 (for adjoint mode) for explanation of the code.

A.1 Tangent-Linear Code

Listing A.1: dco t1s type.hpp

#ifndef DCO T1S INCLUDED
#define DCO T1S INCLUDED

class dco t1 s type {
public :

double v ; double t ;
d co t1 s type ( const double&) ;
dco t1 s type ( ) ;
d co t1 s type& operator=(const dco t1 s type&) ;

} ;
d co t1 s type operator ∗( const dco t1 s type&,

const dco t1 s type&) ;
d co t1 s type operator+(const dco t1 s type&,

const dco t1 s type&) ;
d co t1 s type operator−(const dco t1 s type&,

const dco t1 s type&) ;
d co t1 s type s i n ( const dco t1 s type&) ;
d co t1 s type cos ( const dco t1 s type&) ;
d co t1 s type exp ( const dco t1 s type&) ;

#endif

Listing A.2: dco t1s type.cpp

#include <cmath>
using namespace std ;
#include ” dco t1 s type . hpp”

dco t1 s type : : d co t1 s type ( const double& x) : v (x ) , t (0 ) { } ;
d co t1 s type : : d co t1 s type ( ) : v (0 ) , t (0 ) { } ;

d co t1 s type& dco t1 s type : : operator=(const dco t1 s type& x) {
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i f ( this==&x) return ∗ this ;
v=x . v ; t=x . t ;
return ∗ this ;

}

dco t1 s type operator ∗( const dco t1 s type& x1 , const dco t1 s type& x2 ) {
dco t1 s type tmp ;
tmp . v=x1 . v∗x2 . v ;
tmp . t=x1 . t ∗x2 . v+x1 . v∗x2 . t ;
return tmp ;

}

dco t1 s type operator+(const dco t1 s type& x1 , const dco t1 s type& x2 ) {
dco t1 s type tmp ;
tmp . v=x1 . v+x2 . v ;
tmp . t=x1 . t+x2 . t ;
return tmp ;

}

dco t1 s type operator−(const dco t1 s type& x1 , const dco t1 s type& x2 ) {
dco t1 s type tmp ;
tmp . v=x1 . v−x2 . v ;
tmp . t=x1 . t−x2 . t ;
return tmp ;

}

dco t1 s type s i n ( const dco t1 s type& x) {
dco t1 s type tmp ;
tmp . v=s i n (x . v ) ;
tmp . t=cos ( x . v ) ∗x . t ;
return tmp ;

}

dco t1 s type cos ( const dco t1 s type& x) {
dco t1 s type tmp ;
tmp . v=cos (x . v ) ;
tmp . t=−s i n ( x . v ) ∗x . t ;
return tmp ;

}

dco t1 s type exp ( const dco t1 s type& x) {
dco t1 s type tmp ;
tmp . v=exp (x . v ) ;
tmp . t=tmp . v∗x . t ;
return tmp ;

}

A.2 Adjoint Code

Listing A.3: dco a1s type.hpp

#ifndef DCO A1S INCLUDED
#de f i n e DCO A1S INCLUDED
#de f i n e DCO A1S TAPE SIZE 1000000

#de f i n e DCO A1S UNDEF −1
#de f i n e DCO A1S CONST 0
#de f i n e DCO A1S ASG 1
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#de f i n e DCO A1S ADD 2
#de f i n e DCO A1S SUB 3
#de f i n e DCO A1S MUL 4
#de f i n e DCO A1S SIN 5
#de f i n e DCO A1S COS 6
#de f i n e DCO A1S EXP 7

class dco a1 s t ape en t ry {
public :

int oc ;
int arg1 ;
int arg2 ;
double v ;
double a ;
d co a1 s t ape en t ry ( ) : oc (DCO A1S UNDEF) , arg1 (DCO A1S UNDEF) , arg2 (

DCO A1S UNDEF) , v (0 ) , a (0 ) {} ;
} ;

class dco a1s type {
public :

int va ;
double v ;
dco a1s type ( ) : va (DCO A1S UNDEF) , v (0 ) {} ;
d co a1s type ( const double&) ;
dco a1s type& operator=(const dco a1s type&) ;

} ;

d co a1s type operator ∗( const dco a1s type&, const dco a1s type&) ;
dco a1s type operator+(const dco a1s type&, const dco a1s type&) ;
dco a1s type operator−(const dco a1s type&, const dco a1s type&) ;
dco a1s type s i n ( const dco a1s type&) ;
dco a1s type cos ( const dco a1s type&) ;
dco a1s type exp ( const dco a1s type&) ;
void dco a1 s p r i n t t ap e ( ) ;
void d c o a 1 s i n t e r p r e t t a p e ( ) ;
void d c o a 1 s r e s e t t a p e ( ) ;

#endif

Listing A.4: dco a1s type.cpp

#include <cmath>
#include <iostream>

using namespace std ;
#include ” dco a1s type . hpp”

stat ic int dco a1s vac =0;
d co a1 s t ape en t ry dco a1s tape [DCO A1S TAPE SIZE ] ;

dco a1s type : : dco a1s type ( const double& x) : v (x ) {
dco a1s tape [ dco a1s vac ] . oc=DCO A1S CONST;
dco a1s tape [ dco a1s vac ] . v=x ;
va=dco a1s vac++;

} ;

d co a1s type& dco a1s type : : operator=(const dco a1s type& x) {
i f ( this==&x) return ∗ this ;
d co a1s tape [ dco a1s vac ] . oc=DCO A1S ASG;
dco a1s tape [ dco a1s vac ] . v=v=x . v ;
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dco a1s tape [ dco a1s vac ] . arg1=x . va ;
va=dco a1s vac++;
return ∗ this ;

}

dco a1s type operator ∗( const dco a1s type& x1 , const dco a1s type& x2 ) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S MUL;
dco a1s tape [ dco a1s vac ] . arg1=x1 . va ;
dco a1s tape [ dco a1s vac ] . arg2=x2 . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=x1 . v∗x2 . v ;
tmp . va=dco a1s vac++;
return tmp ;

}

dco a1s type operator+(const dco a1s type& x1 , const dco a1s type& x2 ) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S ADD;
dco a1s tape [ dco a1s vac ] . arg1=x1 . va ;
dco a1s tape [ dco a1s vac ] . arg2=x2 . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=x1 . v+x2 . v ;
tmp . va=dco a1s vac++;
return tmp ;

}

dco a1s type operator−(const dco a1s type& x1 , const dco a1s type& x2 ) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S SUB ;
dco a1s tape [ dco a1s vac ] . arg1=x1 . va ;
dco a1s tape [ dco a1s vac ] . arg2=x2 . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=x1 . v−x2 . v ;
tmp . va=dco a1s vac++;
return tmp ;

}

dco a1s type s i n ( const dco a1s type& x) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S SIN ;
dco a1s tape [ dco a1s vac ] . arg1=x . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=s i n (x . v ) ;
tmp . va=dco a1s vac++;
return tmp ;

}

dco a1s type cos ( const dco a1s type& x) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S COS ;
dco a1s tape [ dco a1s vac ] . arg1=x . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=cos ( x . v ) ;
tmp . va=dco a1s vac++;
return tmp ;

}

dco a1s type exp ( const dco a1s type& x) {
dco a1s type tmp ;
dco a1s tape [ dco a1s vac ] . oc=DCO A1S EXP;
dco a1s tape [ dco a1s vac ] . arg1=x . va ;
dco a1s tape [ dco a1s vac ] . v=tmp . v=exp (x . v ) ;
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tmp . va=dco a1s vac++;
return tmp ;

}

void dco a1 s p r i n t t ap e ( ) {
cout << ” tape : ” << endl ;
for ( int i =0; i<dco a1s vac ; i++)

cout << i << ” : [ ” << dco a1s tape [ i ] . oc << ” , ”
<< dco a1s tape [ i ] . arg1 << ” , ”
<< dco a1s tape [ i ] . arg2 << ” , ”
<< dco a1s tape [ i ] . v << ” , ”
<< dco a1s tape [ i ] . a << ” ] ” << endl ;

}

void d c o a 1 s r e s e t t a p e ( ) {
for ( int i =0; i<dco a1s vac ; i++)

dco a1s tape [ i ] . a=0;
dco a1s vac =0;

}

void d c o a 1 s i n t e r p r e t t a p e ( ) {
for ( int i=dco a1s vac ; i>=0; i−−) {

switch ( dco a1s tape [ i ] . oc ) {
case DCO A1S ASG : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ i ] . a ;
break ;

}
case DCO A1S ADD : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ i ] . a ;
dco a1s tape [ dco a1s tape [ i ] . arg2 ] . a+=dco a1s tape [ i ] . a ;
break ;

}
case DCO A1S SUB : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ i ] . a ;
dco a1s tape [ dco a1s tape [ i ] . arg2 ] . a−=dco a1s tape [ i ] . a ;
break ;

}
case DCO A1S MUL : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ dco a1s tape [ i ] .
arg2 ] . v∗ dco a1s tape [ i ] . a ;

dco a1s tape [ dco a1s tape [ i ] . arg2 ] . a+=dco a1s tape [ dco a1s tape [ i ] .
arg1 ] . v∗ dco a1s tape [ i ] . a ;

break ;
}
case DCO A1S SIN : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=cos ( dco a1s tape [ dco a1s tape [
i ] . arg1 ] . v ) ∗ dco a1s tape [ i ] . a ;

break ;
}
case DCO A1S COS : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a−=s in ( dco a1s tape [ dco a1s tape [
i ] . arg1 ] . v ) ∗ dco a1s tape [ i ] . a ;

break ;
}
case DCO A1S EXP : {

dco a1s tape [ dco a1s tape [ i ] . arg1 ] . a+=dco a1s tape [ i ] . v∗ dco a1s tape
[ i ] . a ;

break ;
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}
}

}
}
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Appendix B

dcc0.9 Syntax

This chapter contains a summary of the syntax accepted by version 0.9 of dcc. The same infor-
mation can be obtained by running flex and bison in their diagnostic modes on the respective
input files scanner.l and parser.y.

B.1 bison Grammar

code : s e q u e n c e o f g l o b a l d e c l a r a t i o n s s equ en c e o f s ub r ou t i n e s

s e qu en c e o f s ub r ou t i n e s : subrout ine
| s e qu en c e o f s ub r ou t i n e s subrout ine

subrout ine : VOID SYMBOL ’ ( ’ l i s t o f a r g umen t s ’ ) ’ ’ { ’
s e q u e n c e o f l o c a l d e c l a r a t i o n s s equence o f s t a t ement s ’ } ’

l i s t o f a r g umen t s : argument
| l i s t o f a r g umen t s ’ , ’ argument

s e q u e n c e o f a s t e r i x e s : ’ ∗ ’
| s e q u e n c e o f a s t e r i x e s ’ ∗ ’

argument : INT ’&’ SYMBOL
| INT SYMBOL
| FLOAT ’&’ SYMBOL
| FLOAT s e qu e n c e o f a s t e r i x e s SYMBOL
| INT s e q u e n c e o f a s t e r i x e s SYMBOL

s e qu e n c e o f g l o b a l d e c l a r a t i o n s : /∗ empty ∗/
| s e q u e n c e o f g l o b a l d e c l a r a t i o n s

g l o b a l d e c l a r a t i o n

s e q u e n c e o f l o c a l d e c l a r a t i o n s : /∗ empty ∗/
| s e q u e n c e o f l o c a l d e c l a r a t i o n s

l o c a l d e c l a r a t i o n

l o c a l d e c l a r a t i o n : FLOAT SYMBOL ’=’ CONSTANT ’ ; ’
| INT SYMBOL ’=’ CONSTANT ’ ; ’

g l o b a l d e c l a r a t i o n : INT SYMBOL ’=’ CONSTANT ’ ; ’
| INT SYMBOL ’ [ ’ CONSTANT ’ ] ’ ’ ; ’
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| FLOAT SYMBOL ’=’ CONSTANT ’ ; ’
| FLOAT SYMBOL ’ [ ’ CONSTANT ’ ] ’ ’ ; ’

s equence o f s t a t ement s : statement
| s equence o f s t a t ement s statement

statement : ass ignment
| i f s t a t emen t
| whi l e s ta tement
| s ub r ou t i n e c a l l s t a t emen t ’ ; ’

i f s t a t emen t : IF ’ ( ’ c ond i t i on ’ ) ’ ’ { ’ s equence o f s t a t ement s ’ } ’
e l s e b r anch

e l s e b ranch : /∗ empty ∗/
| ELSE ’ { ’ s equence o f s t a t ement s ’ } ’

wh i l e s ta tement : WHILE ’ ( ’ c ond i t i on ’ ) ’ ’ { ’ s equence o f s t a t ement s ’ } ’

c ond i t i on : memref or constant ’< ’ memref or constant
| memref or constant ’> ’ memref or constant
| memref or constant ’=’ ’=’ memref or constant
| memref or constant ’ ! ’ ’= ’ memref or constant
| memref or constant ’> ’ ’= ’ memref or constant
| memref or constant ’< ’ ’= ’ memref or constant

s ub r ou t i n e c a l l s t a t emen t : SYMBOL ’ ( ’ l i s t o f a r g s ’ ) ’

ass ignment : memref ’= ’ exp r e s s i on ’ ; ’

e xp r e s s i on : ’ ( ’ e xp r e s s i on ’ ) ’
| exp r e s s i on ’ ∗ ’ e xp r e s s i on
| exp r e s s i on ’ / ’ exp r e s s i on
| exp r e s s i on ’+’ exp r e s s i on
| exp r e s s i on ’− ’ e xp r e s s i on
| SIN ’ ( ’ exp r e s s i on ’ ) ’
| COS ’ ( ’ exp r e s s i on ’ ) ’
| EXP ’ ( ’ exp r e s s i on ’ ) ’
| SQRT ’ ( ’ exp r e s s i on ’ ) ’
| TAN ’ ( ’ exp r e s s i on ’ ) ’
| ATAN ’ ( ’ exp r e s s i on ’ ) ’
| LOG ’ ( ’ exp r e s s i on ’ ) ’
| POW ’ ( ’ exp r e s s i on ’ , ’ SYMBOL ’ ) ’
| memref
| CONSTANT

l i s t o f a r g s : memref or constant
| memref or constant ’ , ’ l i s t o f a r g s

memref or constant : memref
| CONSTANT

array index : SYMBOL
| CONSTANT

memref : SYMBOL
| a r r a y r e f e r e n c e
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a r r a y r e f e r e n c e : SYMBOL ar r ay a c c e s s

a r r a y a c c e s s : ’ [ ’ a r ray index ’ ] ’

a r r a y a c c e s s : ’ [ ’ a r ray index ’ ] ’ a r r a y a c c e s s

B.2 flex Grammar

Whitespaces are ignored. Single-line comments are allowed starting with //. Some integer and
floating-point constants are supported. Variable names start with lower or upper case letters
followed by further letters, underscores, or digits.

int 0 | [1−9 ] [0 −9 ]∗
f loat { int}” . ” [0−9]∗
const { int } |{ f loat }
symbol ( [A−Z ] | [ a−z ] ) ( ( [A−Z ] | [ a−z ] ) | | { int }) ∗

Supported key words are the following: static, double, int, void, if , else, while, sin, cos, exp,
sqrt, atan, tan, pow, and log.
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