
Essential C++

Numbers

Uwe Naumann

Informatik 12 (STCE), RWTH Aachen University, Germany
naumann@stce.rwth-aachen.de

Topics covered by another (series of) “Essential ...” article(s) are marked by I . Further important
terminology is highlighted.

Prerequisites

I Infrastructure

I First Steps

I Fundamental Types

I Expressions and Assignments

Integers

Integers are represented as binary numbers of varying lengths (char: 1B(yte), short: 2B, int:
4B, long: 8B), e.g, the declaration

i n t i =42;

yields allocation of 4B initialized with 32 + 8 + 2 = 25 + 23 + 21 as

00000000 00000000 00000000 00101010 .

Negative integer values are defined as the two-complement ((˜ i)+0b1) of the corresponding pos-
itive value, e.g, the declaration

i n t i =−42;

yields allocation of 4B initialized with as

11111111 11111111 11111111 11010110 .

Efficiency of integer arithmetic may benefit from the bitwise operations

˜ i : bitwise negation (one-complement, e.g, ˜ i equals -2)

i&j: bitwise and (e.g, 1&2 equals 0)

i | j : bitwise or (e.g, 1|2 equals 3)

1

i ˆ j : bitwise exclusive or (e.g, 2ˆ3 equals 1)

i<<j: bitwise left shift (e.g, 1<<2 equals 4)

i>>j: bitwise right shift (e.g, 12>>2 equals 3)

Information on ranges covered by integer types are provided by the <limits> chapter of the
standard library.

ASCII
Integers of type char encode characters according to ASCII1. The values between 33 and 126
are printed as

! " # $ % & ’ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [\] ^ _ ‘ a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

Further special characters include backspace (8), horizontal tabulator (9) and escape (27).
The (potentially larger) type wchar t is used for extensions of ASCII such as Unicode.

Floating-Point Numbers

Real numbers x ∈ R are represented as floating-point numbers with base β, precision t and
exponent range [L,U] as follows:

x = ±
(
m0 +

m1

β
+
m2

β2
+ . . .+

mt−1

βt−1

)
βe

where 0 ≤ mi ≤ β − 1 for i = 0, . . . , t − 1 and L ≤ e ≤ U. The sequences of base-β digits
m = m0m1 . . .mt−1 and e = e0e1 . . . es−1 are called mantissa (also: significant) and exponent.
The signed exponent is biased by shifting into the positive range through addition of 2s−1 − 1.
Thus comparison of floating-point numbers can be simplified.

All relevant information on floating-point numbers is provided by the <limits> chapter of the
standard library including the smallest positive floating-point numbers whose sum with one is
greater than one (e.g, numeric limits<float>::epsilon()). This machine epsilon ε quantifies the
limits of the precision of floating-point arithmetic on the given machine with the given data type.

Typically, floating-point numbers are normalized asm0 = 1 unless x = 0, i.e, 1 ≤ m < β. Abso-
lute values below the smallest non-vanishing positive floating-value (e.g, numeric limits<float>::min())
are represented as zero (underflow). Hence, division by the difference of two almost equal num-
bers may lead to division by zero. Absolute values larger than the largest non-vanishing positive
floating-value (e.g, std :: numeric limits<float>::max()) result in overflow, which can lead to fur-
ther dramatic numerical errors.

For example, the floating-point number system defined by β = 2, t = 3 and [L,U] = [−1, 1]
contains the following 25 elements:

0

± 1.002 ∗ 2−1 = ±0.510, ±1.012 ∗ 2−1 = ±0.62510
± 1.102 ∗ 2−1 = ±0.7510, ±1.112 ∗ 2−1 = ±0.87510
± 1.002 ∗ 20 = ±110, ±1.012 ∗ 20 = ±1.2510
± 1.102 ∗ 20 = ±1.510, ±1.112 ∗ 20 = ±1.7510
± 1.002 ∗ 21 = ±210, ±1.012 ∗ 21 = ±2.510
± 1.102 ∗ 21 = ±310, ±1.112 ∗ 21 = ±3.510

1American Standard Code for Information Interchange

2

where subscripts denote the base (binary or decimal) of the given sequence of digits.
Denormalized floating-point numbers mitigate underflow by eliminating the assumption that

m0 = 1. The range of the mantissa is modified accordingly.

float

Single-precision floating-point numbers use 23 bits for the mantissa (24th bit equal to 1 due to
normlization), 8 bits for the exponent and 1 bit for the sign yielding six significant digits in decimal
format with absolute values ranging over [1.17549e−38, 3.40282e+38]. Examples relating decimal
values to their binary floating-point representation include

0 =̂ 00000000 00000000 00000000 00000000

1 =̂ 00111111 10000000 00000000 00000000

−2.1 =̂ 11000000 00000110 01100110 01100110 .

The following program prints −2.1 on the screen by interpretation of the corresponding floating-
point representation.

Listing 1: Floating-Point Number
1 #include <iostream>
2 #include <cmath>
3

4 i n t main () {
5 s td : : cout << − / / s i g n

6 pow(2 ,
7 pow(2 ,7) / / e x p o n e n t + 2 ˆ 7 − 1 (b i a s)

8 −(pow(2 ,7)−1) / / u n b i a s

9) * (
10 1+pow(2 ,−5)+pow(2 ,−6)+pow(2 ,−9)+pow(2 ,−10)
11 +pow(2 ,−13)+pow(2 ,−14)+pow(2 ,−17)+pow(2 ,−18)
12 +pow(2 ,−21)+pow(2 ,−22) / / m a n t i s s a

13)
14 << s td : : endl ;
15 return 0;
16 }

double

Double-precision floating-point numbers use 52 bits for the mantissa (53rd bit equal to 1 due to
normlization), 11 bits for the exponent and 1 bit for the sign yielding fifteen significant digits in
decimal format with absolute values ranging over [2.22507e− 308, 1.79769e+ 308].

Special Numbers

• 0: all bits equal to zero, e.g., for single precision

00000000 00000000 00000000 00000000

• −0: sign bit equal to one; remaining bits equal to zero, e.g,

10000000 00000000 00000000 00000000

(underflow of a negative number)

3

• ∞: bits of biased exponent equal to one; remaining bits equal to zero, e.g,

01111111 10000000 00000000 00000000

• −∞: bits of mantissa equal to zero; remaining bits equal to one, e.g,

11111111 10000000 00000000 00000000

• NaN (not a number): bits of biased exponent equal to one; arbitrary sign; arbitrary non-zero
mantissa , e.g,

01111111 10000000 00000100 00000000

Operations which result in special numbers include

x

0
=

∞ x > 0

NaN x = 0

−∞ x < 0

0 · ∞ = NaN x < 0 .

Numerical Issues

Floating-point values form a grid. Most real values cannot be represented exactly. They are
typically rounded to the nearest representable value, e.g, 1.126 ≈ 1.25 in (β = 2, t = 3, [L,U] =
[−1, 1]). Subtraction of two almost equal numbers with differences limited to the last k digits of the
mantissa yields a result with and accuracy of only k digits. This effect is known as cancellation.

Combinations of rounding and cancellation can lead to potentially dramatic errors in numerical
computations. Finte difference approximation of first (and higher) derivatives of differentiable
functions y = f(x) implemented as computer programs represents a famous example. Building
on the definition of the derivative of f as

df

dx
= lim

h→0

f(x+ h)− f(x− h)
2 · h

central finite differences approximate the derivative as

df

dx
≈ f(x+ h)− f(x− h)

2 · h

for a suitable h. Choosing a “suitable” h can be tricky as its absolute value cannot be decreased
arbitrarly in floating-point arithmetic. The following table lists the results obtained for y = x3 at
x = 1 for h = 1, . . . , 10−16. Obviously, the correct result is equal to 3.

4

h float double
100 4 4
10−1 3.01 3.01
10−2 3.0001 3.0001
10−3 3.00005 3

3.45267 · 10−4 2.99994 3
10−4 3.0002 3
10−5 3.00407 3
10−6 2.95043 3
10−7 3.57628 3

1.49012 · 10−8 0 3
10−8 0 3
10−9 0 3
10−10 0 3
10−11 0 3.0001
10−12 0 2.99927
10−13 0 2.9976
10−14 0 3.16414
10−15 0 1.66533
10−16 0 0

A suitable h needs to be compromise between accuracy (small h) and numerical stability (not too
small h) of the approximation. Various mathematical properties of f impact the choice. A rule of
thumb suggests a perturbation of x = 1 at the center of its mantissa, which is obtained by setting
h =
√
ε. The corresponding entries for float and double are printed in bold The following sample

program ilustrates this approach.

Listing 2: Numerical Differentiation
1 #include <cmath>
2 #include < l i m i t s >
3 #include <iostream>
4

5 using T= f l o a t ; / / r e p l a c e T w i t h f l o a t f r o m h e r e o n w a r d s

6

7 T f (T x) { return pow(x , 3) ; }
8

9 i n t main () {
10 T x=1 , h= s q r t (s td : : numer i c l im i t s<T> : : eps i l on ()) ;
11 s td : : cout << (f (x+h)− f (x−h)) / (2 * h) << std : : endl ;
12 return 0;
13 }

It produces the output 2.99994.

References

[1] https://www.cppreference.com.

[2] https://docs.microsoft.com/en-us/cpp/cpp.

[3] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Professional, 4th
edition, 2013.

5

