
EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

Discrete Adjoint Approaches for CHT Applications in OpenFOAM
Markus Towara*

Software and Tools for Computational Engineering (STCE)
RWTH Aachen University, 52062 Aachen, Germany

Email: towara@stce.rwth-aachen.de

Johannes Lotz
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University, 52062 Aachen, Germany
Email: lotz@stce.rwth-aachen.de

Uwe Naumann
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University, 52062 Aachen, Germany
Email: naumann@stce.rwth-aachen.de

Summary

Conjugate Heat Transfer (CHT) simulations allow the prediction of complex interactions between fluid and solid
mediums. Our application is the optimization of heat transfer between heat sinks and a cooling fluid, used to extract the
heat from server infrastructure. Adjoint methods allow the optimization of high dimensional parameter settings, using
sensitivity information. Compared to classical approaches to sensitivity generation, e.g. finite differences, a significant
improvement in run time can be achieved, as the complexity of deriving the sensitivity scales with the output dimension,
instead of the input (parameter) dimension. As an initial prove of concept, our discrete adjoint OpenFOAM framework
has been extended to facilitate the differentiation of the chtMultiRegionSimpleFoam solver. To combat prohibitive
memory loads a checkpointing approach is used. We will present results of the heat transfer of a copper heat sink
immersed in glycol.

Keywords: CHT, CFD, Algorithmic Differentiaton, OpenFOAM

1 Introduction

Conjugate heat transfer (CHT) simulations allow the
prediction of complex interactions between solids and
fluids. A discussion on the history of CHT methods can
e.g. be found in [1]. Previous studies with heat transfer
using the continuous or adjoint method include [2–4].

The paper builds on our previous works [5–7]
to introduce Algorithmic Differentiation (AD) into
OpenFOAM. The outline of this paper is as follows.
In Section 2 we briefly introduce the CHT problem
formulation, as utilized by OpenFOAM. Further, in
Section 3 we introduce the basic approaches of AD. In
Sections 4 and 5 we then focus on the implementation
of checkpointing techniques for the CHT problem and
how they differ from our existing implementations for
singe domain solvers. Methods for identifying issues in
checkpointing implementations are discussed. In Section
6 further details, required for obtaining accurate shape

sensitivities, are discussed. Section 7 will introduce a CHT
case of a copper heat sink, immersed in glycol. Preliminary
sensitivity results are shown. A more involved analysis of
the results as well as run time analysis and parallel scaling
results will be shown in the full paper.

2 CHT Foundations

The CHT problem is characterized by the discretization and
solution of multiple PDEs on different domains. In the
fluid domain, the incompressible Navier-Stokes equations,
including the momentum (1), mass (2), and energy
conservation (3) equations are solved. In OpenFOAMs
multiRegionSimpleFoam solver this is achieved by
discretizing the equations using the finite volume method
(FVM) and applying the SIMPLE algorithm, implicitly
coupling the pressure to the velocities. [8].

On the solid domain, the energy equation simplifies to
the less complex Poisson equation (4), that can be solved
to predict the temperature distribution within the solid. The

1

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

governing equations are outlined below, for details and how
they are implemented and discretized within OpenFOAM
see [9].
Fluid domain:

(u⊗∇)u = ν∇
2u− 1

ρ
∇p+b (1)

∇ ·u = 0 (2)
∇ · (ρcpuT) = ∇ · (k∇T)+ q̇F . (3)

Solid domain:

k∇
2T =−q̇S (4)

Here u denotes velocity, p pressure, ρ fluid density, ν

kinmatic viscosity, T temperature, cP specific heat capacity,
k heat conductivity, q̇F external heat fluxes into the fluid
domain, and q̇S external heat fluxes into the solid domain.

Assuming a positive temperature gradient between solid
and fluid, the fluid convects heat energy away from the solid
surface, thus effectively cooling the boundary and interior
of the solid domain. The solution of the Navier-Stokes
and Poisson equation are only loosely coupled, that is
both equations are discretized and solved for independently
and are only coupled by the shared temperature boundary
conditions. This helps with stability and complexity of
individual simulation steps, but it can lower the overall
convergence rate. In our experience, the under-relaxation
factor for the temperature in the solid domain can be chosen
close or equal to one, greatly improving convergence of the
solid temperature field.

The interface between solid and fluid phases can either
be a conforming mesh, where both phases share the same
patch with identical boundary faces (with flipped normals)
or a non-conforming mesh with incompatible boundary
faces. In this case the values can be interpolated from
the fluid to solid patch and vice-versa. Both cases can be
differentiated by AD without modifications, however the
interpolation adds a non-trivial amount of computational
work.

3 Algorithmic Differentiation

We consider the optimization problem J(x) for J : IRn →
IR, where each function evaluation J(x) comprises the
solution of the discrete Navier-Stokes equations and the
coupled heat equations, forming a very large system of
parameterized nonlinear equations. First-order AD assumes
J to be at least once continuously differentiable at all points
of interest. For a given implementation of the primal
objective y = J(x), a corresponding (first-order) adjoint
code computes

x̄ = J̄(x, ȳ)≡ ∇JT · ȳ,

where x̄ ∈ IRn and ȳ ∈ IR are the adjoints of x and y
respectively. Using the adjoint mode of AD, the gradient
can be obtained at a computational cost of O(1) ·Cost(J),
where Cost(J) denotes the computational cost of a single

evaluation of J. The actual run time factor depends on
various parameters, including the mode of differentiation
(continuous vs. discrete adjoint), the expertise of the adjoint
code developer, and the quality of the AD software tool, if
one is used.

For reference, the computational cost to compute the
same gradient using finite differences or the tangent mode
of AD is O(n) ·Cost(J). For our CHT applications we use
the adjoint model, as typically a very large number of inputs
are mapped onto a single output.

Conceptually, AD is based on the fact that the given
implementation of the primal objective as a computer
program can be decomposed at run time into a single
assignment code.

for j = n, . . . ,n+ p

v j = ϕ j(vi)i≺ j ,

where i ≺ j denotes a direct dependence of the variable v j
on vi. The result of each elemental function ϕ j is assigned
to a unique auxiliary variable v j. The n independent inputs
xi = vi, for i = 0, . . . ,n−1, are mapped onto the dependent
output y = vn+p. The values of p intermediate variables vk
are computed for k = n, . . . ,n+ p−1.

The primal code is augmented with instructions for
storing data which is required for the reversal of the data
flow and for the computation of the local partial derivatives
∂ϕ j
∂vi

, for j = n, . . . ,n + p and i ≺ j. A data structure
commonly referred to as tape is used for this purpose.
This (augmented) forward section of the adjoint code is
succeeded by the reverse section propagating adjoints v̄i for
all vi in reverse order, that is, for i = n+ p−1, . . . ,0 :

for j = n, . . . ,n+ p+m−1
v j = ϕ j(vi)i≺ j

}
forward section

for i = n+ p−1, . . . ,0

v̄i = ∑
j:i≺ j

∂ϕ j

∂vi
· v̄ j

 reverse section

(5)

Note that the v j computed in the forward section are
potentially required as arguments of local partial derivatives
within the reverse section. They are read in reverse with
respect to the original order of their evaluation. The
additional persistent memory requirement of the adjoint
code becomes O(n + p). The efficient reversal of the
data flow is among the main challenges in adjoint AD.
It is responsible for black-box adjoint AD typically not
being applicable to large-scale numerical simulations. The
available persistent memory may simply not be large
enough [10].

For our implementation we use the tape based AD tool
dco/c++ [11], which implements an operator overloading
approach of AD, as opposed to source code transformation.

2

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

4 Checkpointing Considerations

Checkpointing is an important technique to reduce the
memory demands of the adjoint mode of AD by trading
memory against run time [12]. Only parts of the program
are adjoined at a time, a previous state is then restored from
a checkpoint and a different part of the program is taped
and adjoined. Let xi be the state at an iteration step i. E.g.
for the incompressible laminar Navier-Stokes equations the
state is the combination of velocity, pressure and face flux
fields x = (U,p,φ). The general procedure to adjoin a
single iteration step f i, transforming state xi into xi+1 can be
formalized as follows. We assume at least one checkpoint at
x0 is available. We further assume that the adjoints xi+1 are
already known from previous applications of the procedure.

• Restore state x j where j ≤ i and min
c j∈C

(i− j)

• If j < i passively recalculate xi

• Register state xi as inputs. If no other statements are
executed in this step, this has the added benefit, that
the adjoints x̄i will be located in memory contiguously,
once they are calculated.

• Calculate and tape iteration step i: xi+1 = f i(xi).

• Register state xi+1 as outputs. If no other statements
are executed in this step, this has the added benefit,
that the adjoints x̄i+1 can be written to memory
contiguously.

• Restore previously calculated adjoints x̄i+1 into the
tape.

• Interpret tape, calculating x̄i =
(

∂ f (xi)
∂xi

)T
· x̄i+1 and

ᾱ = ᾱ +
(

∂ f (xi)
∂α

)T
· x̄i+1.

• Extract calculated adjoints x̄i from tape

• Reset tape.

This procedure can be repeated until all iteration steps
have been adjoined and all desired adjoints ᾱ have been
accumulated.

Compared to the checkpointing procedure already
outlined in [5], the complexity is increased for
CHT applications in OpenFOAM by the following:
Firstly the mesh is decomposed into multiple regions,
corresponding to solid and fluid phases. Secondly, the CHT
implementation and case setup uses boundary conditions
not previously studied in the context of our discrete
adjoint implementation. Two of these offending boundary
conditions are outlined below. The fixedFluxPressure
condition for p_rgh inherits from the fixedGradient
boundary condition. Thus the boundary field on
patches declared with the fixedFluxPressure
are of type fixedGradientFvPatchField. The

fixedGradientFvPatchField class declares a private
data member Field<Type> gradient_, storing the
surface normal (pressure) gradient. This is easily
overlooked, as the gradient is private to the specific
implementation of the boundary condition and is not part of
the general fvPatchField boundary condition it inherits
from. The fixedFluxPressure boundary condition
iteratively updates the gradient, making the gradient part
of the state. Thus, it needs to be checkpointed. The same
principle applies to the mixedFvPatchField class, that
is utilized by the inletOutlet boundary condition. The
inletOutlet condition locally switches between the fixed
value and fixed gradient boundary condition, depending on
flow direction. It is commonly used to prohibit backflow.
Similarly, the mixedFvPatchField class stores a private
scalarField volumeFraction_, which in the context
of inletOutlet switches between a fixed gradient and
fixed value. If this field is not checkpointed, wrong primals
are calculated during the repeated passive evaluations.

Table 1 lists the quantities that were identified as
being part of the state and need to be checkpointed
for the chtMultiRegionSimpleFoam solver using the
kOmegaSST turbulence model. This is basically a
complete list of OpenFOAMs IOobject registry with some
additional quantities.

Our checkpointing interface needs the possibility to
advance the iteration state one step at a time (from a given
state). Previously this was achieved by holding references
to all fields (locally) created in the OpenFOAM solvers
main() routine in a separate class structure. This involves
a lot of code duplication and additional work to adopt the
checkpointing procedure to different solvers. Therefore, we
recently switched to an implementation where the iteration
step is captured in an C++11 lambda expression, which
allows to explicitly or implicitly capture the variables local
to the main routine. By wrapping the created lambda
function into a std::function<T> structure it can be
passed to the checkpointing interface. Thus, the simulation
state can be advanced whenever necessary by calling the
created function. As checkpointing schemes we support
Revolve [13] and a simple equidistant scheme.

As stated earlier, the interpolation between different
meshes can add a significant overhead to the required tape
memory. For a static (non-moving) mesh the interpolation
coefficients are constant. However, the interpolation is
currently recorded in the tape during each iteration step.
The calculation of the adjoints of the interpolation can
potentially be handled more efficiently using automatic or
manual local pre-accumulation [12].

5 Verifying the Checkpointing Implementation

A robust checkpointing implementation is important, as it
also builds the foundation for our more advanced reverse
accumulation [14] and piggybacking [12] solvers. For
the verification of the correctness of the checkpointing
implementation and easier interpretation of issues, we

3

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

Table 1: Quantities that need to be checkpointed
for the solid and fluid phases. All quantities
are either volScalarFields, volVectorFields
or surfaceScalarFields, with the exception
of cumulativeContErr. The checkpoint for
cumulativeContErr is not strictly required, as it is
not connected to the parameters, however it will trip the
debugging safeguards of the AD tool.

region type name
global scalar cumulativeContErr
fluid volScalarField gh
fluid volScalarField thermo:mu
fluid volScalarField alphat
fluid volScalarField thermo:psi
fluid volScalarField nut
fluid volScalarField yWall
fluid volScalarField p
fluid volScalarField T
fluid volScalarField e
fluid volScalarField rho
fluid volScalarField k
fluid volScalarField omega
fluid volScalarField p_rgh
fluid volScalarField thermo:rho
fluid volScalarField thermo:alpha
fluid volVectorField U
fluid surfaceScalarField phi
fluid surfaceScalarField ghf

solid volScalarField thermo:mu
solid volScalarField betavSolid
solid volScalarField thermo:psi
solid volScalarField thermo:rho
solid volScalarField p
solid volScalarField T
solid volScalarField thermo:alpha
solid volScalarField h

implemented three different debug modes for our AD
tool dco/c++. Besides allowing to find issues in the
current cases, these modes can also help to prevent future
problems. They can identify assignments which not yet
actively influence the numerics, but might become relevant
for different activity paths. The modes are described below
and illustrated with brief examples.

Figure 1 shows the conceptual tape layout for a simple
example code with two assignments. For each assignment
an entry in the stack is created, storing the partial derivatives
w.r.t. the variables on the right hand side of the assignment,
as well as pointers to the location in the adjoint vectors
which need to be incremented by the product between
the partial derivative and the incoming adjoints during the
tape interpretation. Note how edges in the tape always
point upwards, propagating adjoint information backwards
through the tape. For a more complete discussion of the
tape implementation see [7, 15].

The debug modes can e.g. be applied to the iteration
loop, to check if any part of the current step depends on
any variables outside of the state. If this is the case,
there is dependence on data which might not be correct
once the chronological order of iterations is broken for
the recomputation of states. The challenge in essence is
to capture the full state necessary to accurately recompute
future states, without storing unneeded intermediate values.
For a complex code, as OpenFOAM, this is not a trivial task,
exemplified by the amount of fields listed in Table 1.

Overwrite barrier: After each assignment into a floating
point variable already known to the tape, its associated
tape index increases in order to handle the name
aliasing of the variable. After an overwrite barrier
is introduced, variables that were defined before the
barrier are not allowed to be overwritten. An exception
is raised if such a variable is modified. Whenever
a variable with global scope is modified within the
iteration, it has to become part of the checkpointed
state, else it will not be restored to its correct value
when a previous checkpoint is loaded. By placing
the barrier in front of the iteration it can be used to
determine if variables not part of the current iteration
or state are overwritten.

Forward barrier: A window in the adjoint vector is
declared, to which no partial edges are allowed
to point. This means that the primal variables
corresponding to these tape positions are not allowed
to occur on the right hand side of an assignment. To
allow the adjoint accumulation of global parameters,
the corresponding tape entries can be moved to before
the window. These parameters must not be overwritten
during the iteration phase. The barrier is enforced
during the (augmented) forward evaluation of the
code.

Reverse barrier: As forward barrier, but takes the actual

4

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

Stack

t1 = ∂v
∂x1

= x2x
2
3 0

t2 = ∂v
∂x2

= x1x
2
3 1

t3 = ∂v
∂x3

= 2x1x2x3 2

t4 = ∂y
∂x2

= v2 1

t5 = ∂y
∂x3

= v3 2

t6 = ∂y
∂v = x2 + x3 3

Adjoint Vector

x̄1 = t1 · v̄

x̄2 = t4 · ȳ + t2 · v̄

x̄3 = t5 · ȳ + t3 · v̄

v̄ = t6 · ȳ

ȳ

Figure 1: Conceptual tape layout of the stack and adjoint vector for the program v = x1 · x2 · x3; y = (x2 + x3) · v [7].

dependencies of the outputs into account, by enforcing
the barrier during the reverse interpretation phase.
This helps to avoid false positives, where the desired
cost functional does not actually depend on the
quantity on the left hand side of the assignment. Thus,
no adjoints will ever be propagated along the offending
edges, producing a false positive in forward barrier
mode.

The forward and reverse barriers are especially useful
to debug issues with the propagation of adjoints, when
the correct recomputation of primals has already been
established. On the other hand, the overwrite barrier can be
used when the primals of the recomputed state do not match
the expected values. In order to not negatively influence
the efficiency of the AD tool, the debugging capability has
been implemented in a separate adjoint data type. The
introduction of AD types into the OpenFOAM code base
has already been discussed in [5] and in detail in [7].
Note, that to enforce the barriers no actual calculation and
propagation of adjoints has to take place, only dependency
information is needed. Thus, this functionality is removed
for the debugging type, significantly lowering the memory
footprint of this type.

In addition to the mentioned barriers, another check is
implemented in dco/c++, which prevents edges pointing to
positions further in the tape. During normal operation such
edges should never exist and in the context of checkpointing
are an indication that states from a previous iteration have
not correctly been identified and checkpointed.

6 Additional Considerations for Shape Optimization

Conceptually, the application of checkpointing remains
unchanged from the case of topology optimization [5].
Compared to topology optimization, the active path through
the pre-processor stage is much more complex. During
mesh construction the parameters, that is the location

of the individual points of the mesh (contained in the
OpenFOAM primitive mesh), are used at various locations
in the code to construct the CFD mesh representation.
This mesh construction phase is only executed once and
can not be restored from a checkpoint easily, therefore
it is permanently included in the tape. Following the
pre-processing phase, the tape is switched off and the usual
checkpointed iteration phase begins. After all iteration steps
have been adjoined, the remaining tape of the pre-processor
is adjoined, yielding the adjoints of the parameters.

A naive implementation yields results that are not
consistent with black-box adjoints, indicating that some
dependencies are missed. Those missing dependencies
have been first identified as the non-orthogonal correction
vectors by manually comparing the tapes of black-box
and checkpointed adjoint [7]. With the newly introduced
debugging facilities the issues can be easily identified using
the forward or reverse barrier technique. The reason the
dependencies are missed is the presence of on demand
functions in OpenFOAM. Several data fields in the
mesh object are stored in dynamic memory, and are only
constructed once they are first requested by their access
routine.

The following access functions in the fvMesh class
create their fields on demand:

• C(): Constructs the cell center vector,

• Cf(): Constructs the face center vector,

• V(): Constructs the cell volume vector,

• Sf(): Constructs the face area vectors,

• magSf(): Constructs the magnitude of face area
vectors,

• deltaCoeffs(): Constructs delta coefficients,

• nonOrthDeltaCoeffs(): Constructs the non
orthogonal delta coefficients,

5

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

• nonOrthCorrectionVectors(): Constructs the non
orthogonal correction vectors.

Most of these functions are first accessed during the
pre-processor phase, and thus the construction of the fields
is captured by the tape. However, the non-orthogonal
correction vectors are first constructed when discretizing
the gradient operator in the momentum equations, using
the corrected surface-normal gradient scheme. The first
occurrence of this discretization is in the first SIMPLE
iteration, at which point the tape has already been switched
off by the checkpointing procedure, to advance the state
in passive mode to the first active section. When
the nonOrthCorrectionVectors() access function is
subsequently called while the tape is active, only a reference
to the field created earlier is returned. Therefore the
dependence of the correction vectors on the parameters is
lost.

To fix this problem, we explicitly call all on demand
generator functions of the fvMesh instance, after the
pre-processing is finished but before the tape is switched
off. This might be redundant for some functions, if the
field has already been initialized. However, as in that
case only a reference is returned, which is subsequently
ignored, the run time and memory cost of those additional
calls is negligible. The actual constructors generating the
data are private to the fvMesh class, and would require
modifications inside the OpenFOAM code base in order to
be accessible from our solvers. Therefore we simply trigger
dummy calls to the accessor routines, which have the side
effect of creating the required data fields. The changes
required in order to obtain a consistent checkpointed shape
adjoint are presented in Listing 1.

An example for the calculation of shape adjoints using
checkpointing is presented in the following section. The
same fixes apply when using the checkpointing interface to
implement reverse accumulation or piggybacking.

7 CHT Sensitivity Results

Figures 2-4 show preliminary results for the calculation
of heat transfer between a heat sink with seven fins at an
draft angle of approximately 1.7 degree. Both domains are
meshed with a blockmesh with conforming interface. The
solid domain consists of 129360 hex cells, the fluid domain
of 321552 cells.

The bottom patch of the solid domain (with material
properties of copper) is held at a constant temperature
of 375 K. The fluid (with material properties of glycol)
enters the domain with a constant velocity of 0.05 m/s
and temperature of 300 K. All exterior walls are
assumed to be adiabatic. The heat transfer between
solid and fluid domain is modeled with OpenFOAMs
turbulentTemperatureCoupledBaffleMixed model

The flow fields and the temperature on the solid
is initialized by running 400 (passive) iteration
steps of chtMultiRegionSimpleFoam. At this
point the simulation has mostly converged. We

Listing 1: Forcing the early on demand construction of the
fvMesh fields by calling their access routines.
vo id i n i t _ m e s h (Foam : : fvMesh& mesh) {

mesh . Sf () ; mesh . magSf () ;
mesh . C () ; mesh . d e l t a C o e f f s () ;
mesh . Cf () ; mesh . n o n O r t h D e l t a C o e f f s () ;
mesh .V () ; mesh . n o n O r t h C o r r e c t i o n V e c t o r s () ;

}

i n t main (i n t a rgc , c h a r ∗ a rgv [])
{

i n c l u d e " c r e a t e T i m e .H"
i n c l u d e " c r e a t e M e s h e s .H"
i n c l u d e " c r e a t e F i e l d s .H"

f o r (fvMesh& so l idMesh : s o l i d R e g i o n s)
{

i n i t _ m e s h (so l idMesh) ;
}
f o r A l l (fvMesh& f l u i d M e s h : f l u i d R e g i o n s)
{

i n i t _ m e s h (f l u i d M e s h) ;
}

ADmode : : g l o b a l _ t a p e −>s w i t c h _ t o _ p a s s i v e () ;
[. . .] / / C o n t i n u e w. c h e c k p o i n t e d CHT a l g o r i t h m

}

then run 20 additional iteration steps of our
adjointChtMultiRegionCheckpointingSimpleFoam
solver to obtain sensitivities.

Taping one iteration step of the shape sensitivity
problem (using efficient symbolic differentiation of linear
solvers) takes roughly 52 GB of tape memory, while one
step of the temperature sensitivity problem takes only 23
GB. The higher demand of the shape sensitivity is due to
the additional complexity caused by the differentiation of
the OpenFOAM mesh representation.

Figure 2 shows the temperature distribution on the
surface of the solid, as well as a slice through the fluid
domain, showing the velocity distribution. As the cost
function we choose the average temperature on the outlet
patch, as calculated by gAverage(T). The dependence of
the average temperature on the temperature distribution
at the heated wall is depicted in Figure 3. Red regions
therefore indicate where the heat energy is best transported
from the bottom plate to the fluid.

For the same case, Figure 4 shows the shape sensitivities
of the average temperature at the outlet w.r.t. movement of
the surface mesh points in surface normal direction. Red
regions indicate where the cross section of the fins should
shrink, making them narrower, blue regions (with negative
sign) indicate where the cross section should be expanded.

6

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

Figure 2: Temperature distribution T on the solid surface with temperature isolines (white). Velocity magnitude
distribution in the fluid domain on a z-Normal slice.

Figure 3: Sensitivity of the average outlet temperature w.r.t. the temperature on the heated bottom wall of the solid
domain.

Figure 4: Surface sensitivity on the solid to fluid interface.

7

EUROGEN 2019 September 12-14, 2019, Guimarães, Portugal

8 Outlook

We demonstrated the applicability of our existing discrete
adjoint framework for OpenFOAM to complex CHT
cases. Emphasis was placed on the correct checkpointing
treatment of the states in the solid and fluid domains.
While, utilizing the presented debugging tools, the manual
treatment of the conflicting boundary conditions is possible,
it is desirable to obtain a more robust implementation that
relies on the already existing primal copy constructors
of OpenFOAM. Such an implementation is currently in
development and will potentially be presented at the
workshop. As part of our ongoin research, we plan to apply
our discrete adjoint CHT framework to a variety of different
heat sink geometries.

Acknowledgment

This work is partially supported by the BMWi ZIM
project Entwicklung optimierter Kühlgeometrien
mittels adjungierter Simulationsmethoden für die
Direkt-Heißwasserkühlung von Rechenzentren
(Developmtent of optimized cooling geometries for
hot watercooling of date centers using adjoint simulation
methods).

References

[1] Dorfman, A. S. Conjugate problems in convective
heat transfer. CRC Press, (2009).

[2] Zeinalpour, M., Mazaheri, K., and Kiani, K. A
coupled adjoint formulation for non-cooled and
internally cooled turbine blade optimization. Applied
Thermal Engineering 105, 327 – 335 (2016).

[3] Kontoleontos, E. A., Papoutsis-Kiachagias,
E. M., Zymaris, A. S., Papadimitriou, D. I., and
Giannakoglou, K. C. Adjoint-based constrained
topology optimization for viscous flows, including
heat transfer. Engineering Optimization 45(8),
941–961 (2013).

[4] Burghardt, O., Gauger, N. R., and Economon,
T. D. Coupled adjoints for conjugate heat transfer
in variable density incompressible flows. In AIAA
Aviation 2019 Forum, 3668, (2019).

[5] Towara, M. and Naumann, U. A discrete adjoint
model for OpenFOAM. Procedia Computer Science
18(0), 429 – 438 (2013). 2013 International
Conference on Computational Science.

[6] Towara, M., Schanen, M., and Naumann, U.
MPI-parallel discrete adjoint OpenFOAM. Procedia
Computer Science 51, 19 – 28 (2015). 2015
International Conference on Computational Science.

[7] Towara, M. Discrete Adjoint Optimization with
OpenFOAM. Dissertation, RWTH Aachen University,
(2019).

[8] Patankar, S. V. and Spalding, D. A calculation
procedure for heat, mass and momentum transfer in
three-dimensional parabolic flows. Int. J. of Heat and
Mass Transfer 15(10), 1787–1806 (1972).

[9] Moukalled, F., Mangani, L., Darwish, M., et al.
The Finite Volume Method in Computational Fluid
Dynamics. Springer, (2016).

[10] Naumann, U. DAG reversal is NP-complete. Journal
of Discrete Algorithms 7, 402–410 (2009).

[11] Leppkes, K., Lotz, J., and Naumann, U. Derivative
Code by Overloading in C++ (dco/c++): Introduction
and Summary of Features. Technical Report
AIB-2016-08, RWTH Aachen University, September
(2016).

[12] Griewank, A. and Walther, A. Evaluating
Derivatives: Principles and Techniques of
Algorithmic Differentiation. SIAM, (2008).

[13] Griewank, A. and Walther, A. Algorithm 799:
Revolve: An implementation of checkpointing
for the reverse or adjoint mode of computational
differentiation. ACM Transactions on Mathematical
Software 26(1) March (2000).

[14] Christianson, B. Reverse accumulation and attractive
fixed points. Optimization Methods and Software 3(4),
311–326 (1994).

[15] Lotz, J. Hybrid Approaches to Adjoint Code
Generation with dco/c++. Dissertation, RWTH
Aachen University, (2016).

8

